Kernelized Reinforcement Learning with Order Optimal Regret Bounds
- URL: http://arxiv.org/abs/2306.07745v3
- Date: Thu, 14 Mar 2024 13:36:01 GMT
- Title: Kernelized Reinforcement Learning with Order Optimal Regret Bounds
- Authors: Sattar Vakili, Julia Olkhovskaya,
- Abstract summary: $pi$KRVI is an optimistic modification of least trivial Hilbert-squares value.
We prove the first order-optimal regret guarantees under a general setting.
We show a sublinear regret bound that is order optimal in the case of Mat'ern kernels.
- Score: 11.024396385514864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning (RL) has shown empirical success in various real world settings with complex models and large state-action spaces. The existing analytical results, however, typically focus on settings with a small number of state-actions or simple models such as linearly modeled state-action value functions. To derive RL policies that efficiently handle large state-action spaces with more general value functions, some recent works have considered nonlinear function approximation using kernel ridge regression. We propose $\pi$-KRVI, an optimistic modification of least-squares value iteration, when the state-action value function is represented by a reproducing kernel Hilbert space (RKHS). We prove the first order-optimal regret guarantees under a general setting. Our results show a significant polynomial in the number of episodes improvement over the state of the art. In particular, with highly non-smooth kernels (such as Neural Tangent kernel or some Mat\'ern kernels) the existing results lead to trivial (superlinear in the number of episodes) regret bounds. We show a sublinear regret bound that is order optimal in the case of Mat\'ern kernels where a lower bound on regret is known.
Related papers
- Highly Adaptive Ridge [84.38107748875144]
We propose a regression method that achieves a $n-2/3$ dimension-free L2 convergence rate in the class of right-continuous functions with square-integrable sectional derivatives.
Har is exactly kernel ridge regression with a specific data-adaptive kernel based on a saturated zero-order tensor-product spline basis expansion.
We demonstrate empirical performance better than state-of-the-art algorithms for small datasets in particular.
arXiv Detail & Related papers (2024-10-03T17:06:06Z) - Learning Analysis of Kernel Ridgeless Regression with Asymmetric Kernel Learning [33.34053480377887]
This paper enhances kernel ridgeless regression with Locally-Adaptive-Bandwidths (LAB) RBF kernels.
For the first time, we demonstrate that functions learned from LAB RBF kernels belong to an integral space of Reproducible Kernel Hilbert Spaces (RKHSs)
arXiv Detail & Related papers (2024-06-03T15:28:12Z) - Adversarial Contextual Bandits Go Kernelized [21.007410990554522]
We study a generalization of the problem of online learning in adversarial linear contextual bandits by incorporating loss functions that belong to a Hilbert kernel space.
We propose a new optimistically biased estimator for the loss functions and reproducing near-optimal regret guarantees.
arXiv Detail & Related papers (2023-10-02T19:59:39Z) - On the Sublinear Regret of GP-UCB [58.25014663727544]
We show that the Gaussian Process Upper Confidence Bound (GP-UCB) algorithm enjoys nearly optimal regret rates.
Our improvements rely on a key technical contribution -- regularizing kernel ridge estimators in proportion to the smoothness of the underlying kernel.
arXiv Detail & Related papers (2023-07-14T13:56:11Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
We study optimal procedures for estimating a linear functional based on observational data.
For any convex and symmetric function class $mathcalF$, we derive a non-asymptotic local minimax bound on the mean-squared error.
arXiv Detail & Related papers (2023-01-16T02:57:37Z) - Experimental Design for Linear Functionals in Reproducing Kernel Hilbert
Spaces [102.08678737900541]
We provide algorithms for constructing bias-aware designs for linear functionals.
We derive non-asymptotic confidence sets for fixed and adaptive designs under sub-Gaussian noise.
arXiv Detail & Related papers (2022-05-26T20:56:25Z) - Value Function Approximations via Kernel Embeddings for No-Regret
Reinforcement Learning [10.828727066443909]
We propose an online model-based RL algorithm, namely the CME-RL, that learns representations of transition distributions as embeddings in a kernel Hilbert space.
We demonstrate the efficiency of our algorithm by proving a frequentist (worst-case) regret bound that is of order $tildeObig(Hgamma_NsqrtNbig)$footnote $tildeO(cdot)$ hides only absolute constant and poly-logarithmic factors.
arXiv Detail & Related papers (2020-11-16T11:40:55Z) - On Function Approximation in Reinforcement Learning: Optimism in the
Face of Large State Spaces [208.67848059021915]
We study the exploration-exploitation tradeoff at the core of reinforcement learning.
In particular, we prove that the complexity of the function class $mathcalF$ characterizes the complexity of the function.
Our regret bounds are independent of the number of episodes.
arXiv Detail & Related papers (2020-11-09T18:32:22Z) - Early stopping and polynomial smoothing in regression with reproducing kernels [2.0411082897313984]
We study the problem of early stopping for iterative learning algorithms in a reproducing kernel Hilbert space (RKHS)
We present a data-driven rule to perform early stopping without a validation set that is based on the so-called minimum discrepancy principle.
The proposed rule is proved to be minimax-optimal over different types of kernel spaces.
arXiv Detail & Related papers (2020-07-14T05:27:18Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z) - RFN: A Random-Feature Based Newton Method for Empirical Risk
Minimization in Reproducing Kernel Hilbert Spaces [14.924672048447334]
Large-scale finite-sum problems can be solved using efficient variants of Newton method, where the Hessian is approximated via sub-samples of data.
In this paper, we observe that for this class of problems, one can naturally use kernel approximation to speed up the Newton method.
We provide a novel second-order algorithm that enjoys local superlinear convergence and global linear convergence.
arXiv Detail & Related papers (2020-02-12T01:14:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.