Highly Adaptive Ridge
- URL: http://arxiv.org/abs/2410.02680v1
- Date: Thu, 3 Oct 2024 17:06:06 GMT
- Title: Highly Adaptive Ridge
- Authors: Alejandro Schuler, Alexander Hagemeister, Mark van der Laan,
- Abstract summary: We propose a regression method that achieves a $n-2/3$ dimension-free L2 convergence rate in the class of right-continuous functions with square-integrable sectional derivatives.
Har is exactly kernel ridge regression with a specific data-adaptive kernel based on a saturated zero-order tensor-product spline basis expansion.
We demonstrate empirical performance better than state-of-the-art algorithms for small datasets in particular.
- Score: 84.38107748875144
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we propose the Highly Adaptive Ridge (HAR): a regression method that achieves a $n^{-1/3}$ dimension-free L2 convergence rate in the class of right-continuous functions with square-integrable sectional derivatives. This is a large nonparametric function class that is particularly appropriate for tabular data. HAR is exactly kernel ridge regression with a specific data-adaptive kernel based on a saturated zero-order tensor-product spline basis expansion. We use simulation and real data to confirm our theory. We demonstrate empirical performance better than state-of-the-art algorithms for small datasets in particular.
Related papers
- Scaling Laws in Linear Regression: Compute, Parameters, and Data [86.48154162485712]
We study the theory of scaling laws in an infinite dimensional linear regression setup.
We show that the reducible part of the test error is $Theta(-(a-1) + N-(a-1)/a)$.
Our theory is consistent with the empirical neural scaling laws and verified by numerical simulation.
arXiv Detail & Related papers (2024-06-12T17:53:29Z) - Globally Convergent Accelerated Algorithms for Multilinear Sparse
Logistic Regression with $\ell_0$-constraints [2.323238724742687]
Multilinear logistic regression serves as a powerful tool for the analysis of multidimensional data.
We propose an Accelerated Proximal Alternating Minim-MLSR model to solve the $ell_0$-MLSR.
We also demonstrate that APALM$+$ is globally convergent to a first-order critical point as well as to establish convergence by using the Kurdy-Lojasiewicz property.
arXiv Detail & Related papers (2023-09-17T11:05:08Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
We study optimal procedures for estimating a linear functional based on observational data.
For any convex and symmetric function class $mathcalF$, we derive a non-asymptotic local minimax bound on the mean-squared error.
arXiv Detail & Related papers (2023-01-16T02:57:37Z) - VO$Q$L: Towards Optimal Regret in Model-free RL with Nonlinear Function
Approximation [43.193807443491814]
We study time-inhomogeneous episodic reinforcement learning (RL) under general function approximation and sparse rewards.
We design a new algorithm, Variance-weighted Optimistic $Q$-Learning (VO$Q$L), based on $Q$-learning and bound its regret dimension to completeness and bounded Eluder for the regression function class.
arXiv Detail & Related papers (2022-12-12T17:37:00Z) - Easy Differentially Private Linear Regression [16.325734286930764]
We study an algorithm which uses the exponential mechanism to select a model with high Tukey depth from a collection of non-private regression models.
We find that this algorithm obtains strong empirical performance in the data-rich setting.
arXiv Detail & Related papers (2022-08-15T17:42:27Z) - Experimental Design for Linear Functionals in Reproducing Kernel Hilbert
Spaces [102.08678737900541]
We provide algorithms for constructing bias-aware designs for linear functionals.
We derive non-asymptotic confidence sets for fixed and adaptive designs under sub-Gaussian noise.
arXiv Detail & Related papers (2022-05-26T20:56:25Z) - Ridge regression with adaptive additive rectangles and other piecewise
functional templates [0.0]
We propose an $L_2$-based penalization algorithm for functional linear regression models.
We show how our algorithm alternates between approximating a suitable template and solving a convex ridge-like problem.
arXiv Detail & Related papers (2020-11-02T15:28:54Z) - Early stopping and polynomial smoothing in regression with reproducing kernels [2.0411082897313984]
We study the problem of early stopping for iterative learning algorithms in a reproducing kernel Hilbert space (RKHS)
We present a data-driven rule to perform early stopping without a validation set that is based on the so-called minimum discrepancy principle.
The proposed rule is proved to be minimax-optimal over different types of kernel spaces.
arXiv Detail & Related papers (2020-07-14T05:27:18Z) - Piecewise Linear Regression via a Difference of Convex Functions [50.89452535187813]
We present a new piecewise linear regression methodology that utilizes fitting a difference of convex functions (DC functions) to the data.
We empirically validate the method, showing it to be practically implementable, and to have comparable performance to existing regression/classification methods on real-world datasets.
arXiv Detail & Related papers (2020-07-05T18:58:47Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.