論文の概要: Unsupervised speech enhancement with deep dynamical generative speech
and noise models
- arxiv url: http://arxiv.org/abs/2306.07820v1
- Date: Tue, 13 Jun 2023 14:52:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-14 13:12:42.752291
- Title: Unsupervised speech enhancement with deep dynamical generative speech
and noise models
- Title(参考訳): 深部動的生成音声と雑音モデルを用いた教師なし音声強調
- Authors: Xiaoyu Lin, Simon Leglaive, Laurent Girin, Xavier Alameda-Pineda
- Abstract要約: 本研究は、クリーン音声モデルとして動的変分オートエンコーダ(DVAE)、ノイズモデルとして非負行列分解(NMF)を用いた教師なし音声強調に関する以前の研究に基づいている。
本研究では,NMFノイズモデルにDVAE潜伏変数,雑音観測,あるいはその両方に依存する深部動的生成モデル(DDGM)を置き換えることを提案する。
- 参考スコア(独自算出の注目度): 26.051535142743166
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This work builds on a previous work on unsupervised speech enhancement using
a dynamical variational autoencoder (DVAE) as the clean speech model and
non-negative matrix factorization (NMF) as the noise model. We propose to
replace the NMF noise model with a deep dynamical generative model (DDGM)
depending either on the DVAE latent variables, or on the noisy observations, or
on both. This DDGM can be trained in three configurations: noise-agnostic,
noise-dependent and noise adaptation after noise-dependent training.
Experimental results show that the proposed method achieves competitive
performance compared to state-of-the-art unsupervised speech enhancement
methods, while the noise-dependent training configuration yields a much more
time-efficient inference process.
- Abstract(参考訳): 本研究は、クリーン音声モデルとして動的変分オートエンコーダ(DVAE)、ノイズモデルとして非負行列分解(NMF)を用いた教師なし音声強調に関する以前の研究に基づいている。
本研究では,NMFノイズモデルにDVAE潜伏変数,雑音観測,あるいはその両方に依存する深部動的生成モデル(DDGM)を置き換えることを提案する。
このDDGMは、ノイズ非依存、ノイズ依存、ノイズ適応の3つの構成で訓練することができる。
実験結果から,提案手法は最先端の教師なし音声強調法と比較して競争性能が向上し,ノイズ依存型トレーニング構成ではより時間効率のよい推論プロセスが得られた。
関連論文リスト
- Continuous Modeling of the Denoising Process for Speech Enhancement
Based on Deep Learning [61.787485727134424]
状態変数をデノナイジングプロセスを示すために使用します。
UNetのようなニューラルネットワークは、連続的復調プロセスからサンプリングされたすべての状態変数を推定することを学ぶ。
実験結果から, クリーンターゲットに少量の雑音を保存することは, 音声強調に有効であることが示唆された。
論文 参考訳(メタデータ) (2023-09-17T13:27:11Z) - DiffSED: Sound Event Detection with Denoising Diffusion [70.18051526555512]
生成学習の観点からSED問題を再構築する。
具体的には,騒音拡散過程において,雑音のある提案から音の時間境界を生成することを目的としている。
トレーニング中は,ノイズの多い遅延クエリを基本バージョンに変換することで,ノイズ発生過程の逆転を学習する。
論文 参考訳(メタデータ) (2023-08-14T17:29:41Z) - Noise-aware Speech Enhancement using Diffusion Probabilistic Model [35.17225451626734]
拡散モデルにおける逆過程を導出する雑音固有情報を抽出する雑音認識音声強調(NASE)手法を提案する。
NASEは任意の拡散SEモデルに一般化できるプラグイン・アンド・プレイモジュールであることが示されている。
論文 参考訳(メタデータ) (2023-07-16T12:46:11Z) - An Investigation of Noise in Morphological Inflection [21.411766936034]
本研究は, パイプライン内で発生するノイズの種類を, 真の教師なし形態素パラダイムの完成のために検討する。
異なる種類のノイズが複数の最先端インフレクションモデルに与える影響を比較した。
本稿では,文字レベルのマスク付き言語モデリング(CMLM)の事前学習手法を提案する。
論文 参考訳(メタデータ) (2023-05-26T02:14:34Z) - Inference and Denoise: Causal Inference-based Neural Speech Enhancement [83.4641575757706]
本研究では、雑音の存在を介入としてモデル化することにより、因果推論パラダイムにおける音声強調(SE)課題に対処する。
提案した因果推論に基づく音声強調(CISE)は,ノイズ検出器を用いて間欠雑音音声中のクリーンフレームとノイズフレームを分離し,両フレームセットを2つのマスクベース拡張モジュール(EM)に割り当て,ノイズ条件SEを実行する。
論文 参考訳(メタデータ) (2022-11-02T15:03:50Z) - Improving Distortion Robustness of Self-supervised Speech Processing
Tasks with Domain Adaptation [60.26511271597065]
音声歪みは、視覚的に訓練された音声処理モデルの性能を劣化させる長年の問題である。
音声処理モデルのロバスト性を向上して、音声歪みに遭遇する際の良好な性能を得るには、時間を要する。
論文 参考訳(メタデータ) (2022-03-30T07:25:52Z) - Improving Noise Robustness of Contrastive Speech Representation Learning
with Speech Reconstruction [109.44933866397123]
実環境における音声認識システムの実現には,雑音の堅牢性が不可欠である。
雑音認識のための自己教師型フレームワークにより学習したノイズロスト表現を用いる。
ラベル付きデータのわずか16%で報告された最高の教師付きアプローチに匹敵するパフォーマンスを実現した。
論文 参考訳(メタデータ) (2021-10-28T20:39:02Z) - A Study on Speech Enhancement Based on Diffusion Probabilistic Model [63.38586161802788]
雑音信号からクリーンな音声信号を復元することを目的とした拡散確率モデルに基づく音声強調モデル(DiffuSE)を提案する。
実験結果から、DiffuSEは、標準化されたVoice Bankコーパスタスクにおいて、関連する音声生成モデルに匹敵する性能が得られることがわかった。
論文 参考訳(メタデータ) (2021-07-25T19:23:18Z) - Unsupervised Speech Enhancement using Dynamical Variational
Auto-Encoders [29.796695365217893]
動的変分自動エンコーダ(Dynamical Variational Auto-Encoders, DVAE)は、潜伏変数を持つ深部生成モデルのクラスである。
DVAEの最も一般的な形式に基づく教師なし音声強調アルゴリズムを提案する。
音声強調を行うための変分予測最大化アルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-06-23T09:48:38Z) - Variational Autoencoder for Speech Enhancement with a Noise-Aware
Encoder [30.318947721658862]
本稿では,ノイズ対応エンコーダを用いて,学習段階での雑音情報を含むことを提案する。
提案するノイズ認識vaeは,モデルパラメータ数を増加させることなく,全体的な歪みの観点から標準vaeを上回っている。
論文 参考訳(メタデータ) (2021-02-17T11:40:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。