論文の概要: Chainlet Orbits: Topological Address Embedding for the Bitcoin
Blockchain
- arxiv url: http://arxiv.org/abs/2306.07974v1
- Date: Thu, 18 May 2023 21:16:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-18 12:19:36.082005
- Title: Chainlet Orbits: Topological Address Embedding for the Bitcoin
Blockchain
- Title(参考訳): chainlet orbits - bitcoinブロックチェーンのためのトポロジカルアドレス埋め込み
- Authors: Poupak Azad, Baris Coskunuzer, Murat Kantarcioglu, Cuneyt Gurcan
Akcora
- Abstract要約: 匿名性のある取引を可能にするBitcoinのような暗号通貨の台頭は、さまざまな不正行為の急増につながっている。
トランザクションにおけるそのトポロジ的特性を活用して,Bitcoinアドレスを埋め込む,Chainlet Orbitsという効果的なソリューションを導入する。
当社のアプローチでは,Bitcoinトランザクションネットワーク上で,解釈可能かつ説明可能なマシンラーニングモデルを,ほとんどの日において15分以内で使用することが可能です。
- 参考スコア(独自算出の注目度): 15.099255988459602
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rise of cryptocurrencies like Bitcoin, which enable transactions with a
degree of pseudonymity, has led to a surge in various illicit activities,
including ransomware payments and transactions on darknet markets. These
illegal activities often utilize Bitcoin as the preferred payment method.
However, current tools for detecting illicit behavior either rely on a few
heuristics and laborious data collection processes or employ computationally
inefficient graph neural network (GNN) models that are challenging to
interpret.
To overcome the computational and interpretability limitations of existing
techniques, we introduce an effective solution called Chainlet Orbits. This
approach embeds Bitcoin addresses by leveraging their topological
characteristics in transactions. By employing our innovative address embedding,
we investigate e-crime in Bitcoin networks by focusing on distinctive
substructures that arise from illicit behavior.
The results of our node classification experiments demonstrate superior
performance compared to state-of-the-art methods, including both topological
and GNN-based approaches. Moreover, our approach enables the use of
interpretable and explainable machine learning models in as little as 15
minutes for most days on the Bitcoin transaction network.
- Abstract(参考訳): 匿名性のある取引を可能にするBitcoinのような暗号通貨の台頭は、ランサムウェア支払いやダークネット市場での取引など、さまざまな不正行為の急増につながっている。
これらの違法行為は、しばしばBitcoinを好む支払い方法として利用する。
しかし、現在の不正行為を検出するツールは、いくつかのヒューリスティックと精巧なデータ収集プロセスに依存するか、解釈が難しい計算非効率なグラフニューラルネットワーク(GNN)モデルを採用する。
既存の手法の計算可能性と解釈可能性の限界を克服するために,Chainlet Orbitsと呼ばれる効果的な解を導入する。
このアプローチは、トランザクションのトポロジ的特性を活用することで、Bitcoinアドレスを埋め込む。
革新的なアドレス埋め込みを利用することで、不正な振る舞いから生じる特徴的なサブ構造に着目して、Bitcoinネットワークの電子犯罪を調査します。
ノード分類実験の結果、トポロジカルおよびGNNベースのアプローチを含む最先端手法と比較して優れた性能を示した。
さらに、弊社のアプローチでは、Bitcoinトランザクションネットワーク上で、解釈可能で説明可能な機械学習モデルを、ほとんどの場合15分以内で使用できる。
関連論文リスト
- Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
本稿では,これらの投資商品を活用するために,ニューラルネットワークに基づく効果的なアルゴリズムを提案する。
シャープ比を最大化するために、各アセットの割り当て重量を時間間隔で出力するディープニューラルネットワークを訓練する。
ネットワークの特定の資産に対するバイアスを規制する新たな損失項を提案し,最小分散戦略に近い割り当て戦略をネットワークに学習させる。
論文 参考訳(メタデータ) (2023-10-02T12:33:28Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
本稿では,アダプティブサンプリングとアグリゲーションに基づくグラフニューラルネットワーク(ASA-GNN)を提案する。
ノイズの多いノードをフィルタリングし、不正なノードを補うために、隣のサンプリング戦略を実行する。
3つのファイナンシャルデータセットの実験により,提案手法のASA-GNNは最先端のデータセットよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-11T07:48:39Z) - Demystifying Fraudulent Transactions and Illicit Nodes in the Bitcoin
Network for Financial Forensics [8.97719386315469]
本稿では,Bitcoinネットワークにおける不正検出に対する総合的な応用データサイエンス手法を提案する。
まず、Elliptic++データセットをコントリビュートし、Ellipticトランザクションデータセットを拡張して、822万のBitcoinウォレットアドレス(ノード)を含むようにします。
第2に、多様な機械学習アルゴリズムを用いて、4つのグラフすべてに対して不正検出タスクを実行する。
論文 参考訳(メタデータ) (2023-05-25T18:36:54Z) - Blockchain Large Language Models [65.7726590159576]
本稿では,異常なブロックチェーントランザクションを検出するための動的,リアルタイムなアプローチを提案する。
提案するツールであるBlockGPTは、ブロックチェーンアクティビティのトレース表現を生成し、大規模な言語モデルをスクラッチからトレーニングして、リアルタイム侵入検出システムとして機能させる。
論文 参考訳(メタデータ) (2023-04-25T11:56:18Z) - Detecting Anomalous Cryptocurrency Transactions: an AML/CFT Application
of Machine Learning-based Forensics [5.617291981476445]
本論文は,さまざまな手法を用いて,有向グラフネットワークとして表現されるBitcoinトランザクションの現実的なデータセットを解析する。
これは、Graph Convolutional Networks(GCN)とGraph Attention Networks(GAT)として知られるニューラルネットワークタイプが、有望なAML/CFTソリューションであることを示している。
論文 参考訳(メタデータ) (2022-06-07T16:22:55Z) - Towards Malicious address identification in Bitcoin [3.646526715728388]
時間的特徴セットと非時間的特徴セットを生成し、異なる時間的粒度の機械学習(ML)アルゴリズムを訓練し、手法を検証する。
比較分析によると、アドレスとBitcoinの振る舞いは、インディグリー、アウトディグリー、インターイベントタイムと似ている。
時間的粒度の異なる悪質な行動を示した3人の被疑者を同定した。
論文 参考訳(メタデータ) (2021-12-22T08:11:58Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
本研究では, 実数値から, 最終予測分布上のバイナリネットワークへの誘導型学習パラダイムを提案する。
提案手法は,bnn上で5.515%の絶対利得で,単純なコントラスト学習ベースラインを向上できる。
提案手法は、単純なコントラスト学習ベースラインよりも大幅に改善され、多くの主流教師付きBNN手法に匹敵する。
論文 参考訳(メタデータ) (2021-02-17T18:59:28Z) - GuiltyWalker: Distance to illicit nodes in the Bitcoin network [1.7550798084784973]
本稿では,マネーロンダリングを検出する機械学習手法の性能を高めるために,グラフと過去のラベルの構造に基づく新機能を提案する。
我々の手法であるGuiltyWalkerは、bitcoinトランザクショングラフのランダムウォークを実行し、不正なトランザクションまでの距離に基づいて特徴を計算します。
論文 参考訳(メタデータ) (2021-02-10T10:29:13Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z) - Heterogeneous Graph Neural Networks for Malicious Account Detection [64.0046412312209]
GEMは、悪意のあるアカウントを検出するための、最初の異種グラフニューラルネットワークである。
我々は、デバイス集約とアクティビティ集約という2つの基本的な弱点に基づいて、異種アカウントデバイスグラフから差別的埋め込みを学習する。
実験により、我々のアプローチは、時間とともに競合する手法と比較して、常に有望な結果が得られることが示された。
論文 参考訳(メタデータ) (2020-02-27T18:26:44Z) - Characterizing and Detecting Money Laundering Activities on the Bitcoin
Network [8.212945859699406]
我々はBitcoinネットワーク全体で発生した資金洗浄活動の展望を探る。
3年以上にわたって収集されたデータを用いて、トランザクショングラフを作成し、さまざまなグラフ特性を分析して、マネーロンダリングトランザクションと通常のトランザクションを区別します。
資金洗浄とレギュラー取引を分類するために,4種類のグラフ特徴に基づく分類器のセットを提案し,評価する。
論文 参考訳(メタデータ) (2019-12-27T11:34:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。