Chainlet Orbits: Topological Address Embedding for the Bitcoin
Blockchain
- URL: http://arxiv.org/abs/2306.07974v1
- Date: Thu, 18 May 2023 21:16:59 GMT
- Title: Chainlet Orbits: Topological Address Embedding for the Bitcoin
Blockchain
- Authors: Poupak Azad, Baris Coskunuzer, Murat Kantarcioglu, Cuneyt Gurcan
Akcora
- Abstract summary: Rise of cryptocurrencies like Bitcoin, which enable transactions with a degree of pseudonymity, has led to a surge in various illicit activities.
We introduce an effective solution called Chainlet Orbits to embed Bitcoin addresses by leveraging their topological characteristics in transactions.
Our approach enables the use of interpretable and explainable machine learning models in as little as 15 minutes for most days on the Bitcoin transaction network.
- Score: 15.099255988459602
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rise of cryptocurrencies like Bitcoin, which enable transactions with a
degree of pseudonymity, has led to a surge in various illicit activities,
including ransomware payments and transactions on darknet markets. These
illegal activities often utilize Bitcoin as the preferred payment method.
However, current tools for detecting illicit behavior either rely on a few
heuristics and laborious data collection processes or employ computationally
inefficient graph neural network (GNN) models that are challenging to
interpret.
To overcome the computational and interpretability limitations of existing
techniques, we introduce an effective solution called Chainlet Orbits. This
approach embeds Bitcoin addresses by leveraging their topological
characteristics in transactions. By employing our innovative address embedding,
we investigate e-crime in Bitcoin networks by focusing on distinctive
substructures that arise from illicit behavior.
The results of our node classification experiments demonstrate superior
performance compared to state-of-the-art methods, including both topological
and GNN-based approaches. Moreover, our approach enables the use of
interpretable and explainable machine learning models in as little as 15
minutes for most days on the Bitcoin transaction network.
Related papers
- Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
This paper proposes an effective algorithm based on neural networks to take advantage of these investment products.
A deep neural network, which outputs the allocation weight of each asset at a time interval, is trained to maximize the Sharpe ratio.
A novel loss term is proposed to regulate the network's bias towards a specific asset, thus enforcing the network to learn an allocation strategy that is close to a minimum variance strategy.
arXiv Detail & Related papers (2023-10-02T12:33:28Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - Demystifying Fraudulent Transactions and Illicit Nodes in the Bitcoin
Network for Financial Forensics [8.97719386315469]
This paper presents a holistic applied data science approach to fraud detection in the Bitcoin network.
First, we contribute the Elliptic++ dataset, which extends the Elliptic transaction dataset to include over 822k Bitcoin wallet addresses (nodes)
Second, we perform fraud detection tasks on all four graphs by using diverse machine learning algorithms.
arXiv Detail & Related papers (2023-05-25T18:36:54Z) - Blockchain Large Language Models [65.7726590159576]
This paper presents a dynamic, real-time approach to detecting anomalous blockchain transactions.
The proposed tool, BlockGPT, generates tracing representations of blockchain activity and trains from scratch a large language model to act as a real-time Intrusion Detection System.
arXiv Detail & Related papers (2023-04-25T11:56:18Z) - Detecting Anomalous Cryptocurrency Transactions: an AML/CFT Application
of Machine Learning-based Forensics [5.617291981476445]
The paper analyzes a real-world dataset of Bitcoin transactions represented as a directed graph network through various techniques.
It shows that the neural network types known as Graph Convolutional Networks (GCN) and Graph Attention Networks (GAT) are a promising AML/CFT solution.
arXiv Detail & Related papers (2022-06-07T16:22:55Z) - Towards Malicious address identification in Bitcoin [3.646526715728388]
We generate the temporal and non-temporal feature set and train the Machine Learning (ML) algorithm over different temporal granularities to validate methods.
A comparative analysis of results show that the behavior of addresses in and Bitcoin is similar with respect to in-degree, out-degree and inter-event time.
We identify 3 suspects that showed malicious behavior across different temporal granularities.
arXiv Detail & Related papers (2021-12-22T08:11:58Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
We present a novel guided learning paradigm from real-valued to distill binary networks on the final prediction distribution.
Our proposed method can boost the simple contrastive learning baseline by an absolute gain of 5.515% on BNNs.
Our method achieves substantial improvement over the simple contrastive learning baseline, and is even comparable to many mainstream supervised BNN methods.
arXiv Detail & Related papers (2021-02-17T18:59:28Z) - GuiltyWalker: Distance to illicit nodes in the Bitcoin network [1.7550798084784973]
We propose new features based on the structure of the graph and past labels to boost the performance of machine learning methods to detect money laundering.
Our method, GuiltyWalker, performs random walks on the bitcoin transaction graph and computes features based on the distance to illicit transactions.
arXiv Detail & Related papers (2021-02-10T10:29:13Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z) - Heterogeneous Graph Neural Networks for Malicious Account Detection [64.0046412312209]
We present GEM, the first heterogeneous graph neural network approach for detecting malicious accounts.
We learn discriminative embeddings from heterogeneous account-device graphs based on two fundamental weaknesses of attackers, i.e. device aggregation and activity aggregation.
Experiments show that our approaches consistently perform promising results compared with competitive methods over time.
arXiv Detail & Related papers (2020-02-27T18:26:44Z) - Characterizing and Detecting Money Laundering Activities on the Bitcoin
Network [8.212945859699406]
We explore the landscape of potential money laundering activities occurring across the Bitcoin network.
Using data collected over three years, we create transaction graphs and provide an analysis on various graph characteristics to differentiate money laundering transactions from regular transactions.
We propose and evaluate a set of classifiers based on four types of graph features to classify money laundering and regular transactions.
arXiv Detail & Related papers (2019-12-27T11:34:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.