Nonparametric regression using over-parameterized shallow ReLU neural networks
- URL: http://arxiv.org/abs/2306.08321v2
- Date: Wed, 15 May 2024 07:05:06 GMT
- Title: Nonparametric regression using over-parameterized shallow ReLU neural networks
- Authors: Yunfei Yang, Ding-Xuan Zhou,
- Abstract summary: We show that neural networks can achieve minimax optimal rates of convergence (up to logarithmic factors) for learning functions from certain smooth function classes.
It is assumed that the regression function is from the H"older space with smoothness $alpha(d+3)/2$ or a variation space corresponding to shallow neural networks.
As a byproduct, we derive a new size-independent bound for the local Rademacher complexity of shallow ReLU neural networks.
- Score: 10.339057554827392
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is shown that over-parameterized neural networks can achieve minimax optimal rates of convergence (up to logarithmic factors) for learning functions from certain smooth function classes, if the weights are suitably constrained or regularized. Specifically, we consider the nonparametric regression of estimating an unknown $d$-variate function by using shallow ReLU neural networks. It is assumed that the regression function is from the H\"older space with smoothness $\alpha<(d+3)/2$ or a variation space corresponding to shallow neural networks, which can be viewed as an infinitely wide neural network. In this setting, we prove that least squares estimators based on shallow neural networks with certain norm constraints on the weights are minimax optimal, if the network width is sufficiently large. As a byproduct, we derive a new size-independent bound for the local Rademacher complexity of shallow ReLU neural networks, which may be of independent interest.
Related papers
- Approximation with Random Shallow ReLU Networks with Applications to Model Reference Adaptive Control [0.0]
We show that ReLU networks with randomly generated weights and biases achieve $L_infty$ error of $O(m-1/2)$ with high probability.
We show how the result can be used to get approximations of required accuracy in a model reference adaptive control application.
arXiv Detail & Related papers (2024-03-25T19:39:17Z) - Optimal rates of approximation by shallow ReLU$^k$ neural networks and
applications to nonparametric regression [12.21422686958087]
We study the approximation capacity of some variation spaces corresponding to shallow ReLU$k$ neural networks.
For functions with less smoothness, the approximation rates in terms of the variation norm are established.
We show that shallow neural networks can achieve the minimax optimal rates for learning H"older functions.
arXiv Detail & Related papers (2023-04-04T06:35:02Z) - Benign Overfitting for Two-layer ReLU Convolutional Neural Networks [60.19739010031304]
We establish algorithm-dependent risk bounds for learning two-layer ReLU convolutional neural networks with label-flipping noise.
We show that, under mild conditions, the neural network trained by gradient descent can achieve near-zero training loss and Bayes optimal test risk.
arXiv Detail & Related papers (2023-03-07T18:59:38Z) - The Onset of Variance-Limited Behavior for Networks in the Lazy and Rich
Regimes [75.59720049837459]
We study the transition from infinite-width behavior to this variance limited regime as a function of sample size $P$ and network width $N$.
We find that finite-size effects can become relevant for very small datasets on the order of $P* sim sqrtN$ for regression with ReLU networks.
arXiv Detail & Related papers (2022-12-23T04:48:04Z) - Near-Minimax Optimal Estimation With Shallow ReLU Neural Networks [19.216784367141972]
We study the problem of estimating an unknown function from noisy data using shallow (single-hidden layer) ReLU neural networks.
We quantify the performance of these neural network estimators when the data-generating function belongs to the space of functions of second-order bounded variation in the Radon domain.
arXiv Detail & Related papers (2021-09-18T05:56:06Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
We show that a sufficiently large two-layer ReLU-network with standard Gaussian weights and uniformly distributed biases can solve this problem with high probability.
We quantify the relevant structure of the data in terms of a novel notion of mutual complexity.
arXiv Detail & Related papers (2021-07-31T10:25:26Z) - The Rate of Convergence of Variation-Constrained Deep Neural Networks [35.393855471751756]
We show that a class of variation-constrained neural networks can achieve near-parametric rate $n-1/2+delta$ for an arbitrarily small constant $delta$.
The result indicates that the neural function space needed for approximating smooth functions may not be as large as what is often perceived.
arXiv Detail & Related papers (2021-06-22T21:28:00Z) - Measurement error models: from nonparametric methods to deep neural
networks [3.1798318618973362]
We propose an efficient neural network design for estimating measurement error models.
We use a fully connected feed-forward neural network to approximate the regression function $f(x)$.
We conduct an extensive numerical study to compare the neural network approach with classical nonparametric methods.
arXiv Detail & Related papers (2020-07-15T06:05:37Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Towards Understanding Hierarchical Learning: Benefits of Neural
Representations [160.33479656108926]
In this work, we demonstrate that intermediate neural representations add more flexibility to neural networks.
We show that neural representation can achieve improved sample complexities compared with the raw input.
Our results characterize when neural representations are beneficial, and may provide a new perspective on why depth is important in deep learning.
arXiv Detail & Related papers (2020-06-24T02:44:54Z) - Measuring Model Complexity of Neural Networks with Curve Activation
Functions [100.98319505253797]
We propose the linear approximation neural network (LANN) to approximate a given deep model with curve activation function.
We experimentally explore the training process of neural networks and detect overfitting.
We find that the $L1$ and $L2$ regularizations suppress the increase of model complexity.
arXiv Detail & Related papers (2020-06-16T07:38:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.