Measurement error models: from nonparametric methods to deep neural
networks
- URL: http://arxiv.org/abs/2007.07498v1
- Date: Wed, 15 Jul 2020 06:05:37 GMT
- Title: Measurement error models: from nonparametric methods to deep neural
networks
- Authors: Zhirui Hu, Zheng Tracy Ke, Jun S Liu
- Abstract summary: We propose an efficient neural network design for estimating measurement error models.
We use a fully connected feed-forward neural network to approximate the regression function $f(x)$.
We conduct an extensive numerical study to compare the neural network approach with classical nonparametric methods.
- Score: 3.1798318618973362
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The success of deep learning has inspired recent interests in applying neural
networks in statistical inference. In this paper, we investigate the use of
deep neural networks for nonparametric regression with measurement errors. We
propose an efficient neural network design for estimating measurement error
models, in which we use a fully connected feed-forward neural network (FNN) to
approximate the regression function $f(x)$, a normalizing flow to approximate
the prior distribution of $X$, and an inference network to approximate the
posterior distribution of $X$. Our method utilizes recent advances in
variational inference for deep neural networks, such as the importance weight
autoencoder, doubly reparametrized gradient estimator, and non-linear
independent components estimation. We conduct an extensive numerical study to
compare the neural network approach with classical nonparametric methods and
observe that the neural network approach is more flexible in accommodating
different classes of regression functions and performs superior or comparable
to the best available method in nearly all settings.
Related papers
- Scalable Bayesian Inference in the Era of Deep Learning: From Gaussian Processes to Deep Neural Networks [0.5827521884806072]
Large neural networks trained on large datasets have become the dominant paradigm in machine learning.
This thesis develops scalable methods to equip neural networks with model uncertainty.
arXiv Detail & Related papers (2024-04-29T23:38:58Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - Sup-Norm Convergence of Deep Neural Network Estimator for Nonparametric
Regression by Adversarial Training [5.68558935178946]
We show the sup-norm convergence of deep neural network estimators with a novel adversarial training scheme.
A deep neural network estimator achieves the optimal rate in the sup-norm sense by the proposed adversarial training with correction.
arXiv Detail & Related papers (2023-07-08T20:24:14Z) - Optimal rates of approximation by shallow ReLU$^k$ neural networks and
applications to nonparametric regression [12.21422686958087]
We study the approximation capacity of some variation spaces corresponding to shallow ReLU$k$ neural networks.
For functions with less smoothness, the approximation rates in terms of the variation norm are established.
We show that shallow neural networks can achieve the minimax optimal rates for learning H"older functions.
arXiv Detail & Related papers (2023-04-04T06:35:02Z) - Global quantitative robustness of regression feed-forward neural
networks [0.0]
We adapt the notion of the regression breakdown point to regression neural networks.
We compare the performance, measured by the out-of-sample loss, by a proxy of the breakdown rate.
The results indeed motivate to use robust loss functions for neural network training.
arXiv Detail & Related papers (2022-11-18T09:57:53Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Neural Capacitance: A New Perspective of Neural Network Selection via
Edge Dynamics [85.31710759801705]
Current practice requires expensive computational costs in model training for performance prediction.
We propose a novel framework for neural network selection by analyzing the governing dynamics over synaptic connections (edges) during training.
Our framework is built on the fact that back-propagation during neural network training is equivalent to the dynamical evolution of synaptic connections.
arXiv Detail & Related papers (2022-01-11T20:53:15Z) - Neuron-based Pruning of Deep Neural Networks with Better Generalization
using Kronecker Factored Curvature Approximation [18.224344440110862]
The proposed algorithm directs the parameters of the compressed model toward a flatter solution by exploring the spectral radius of Hessian.
Our result shows that it improves the state-of-the-art results on neuron compression.
The method is able to achieve very small networks with small accuracy across different neural network models.
arXiv Detail & Related papers (2021-11-16T15:55:59Z) - Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity
on Pruned Neural Networks [79.74580058178594]
We analyze the performance of training a pruned neural network by analyzing the geometric structure of the objective function.
We show that the convex region near a desirable model with guaranteed generalization enlarges as the neural network model is pruned.
arXiv Detail & Related papers (2021-10-12T01:11:07Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
Modern machine learning models often employ a huge number of parameters and are typically optimized to have zero training loss.
We examine how these benign overfitting phenomena occur in a two-layer neural network setting.
We show that it is possible for the two-layer ReLU network interpolator to achieve a near minimax-optimal learning rate.
arXiv Detail & Related papers (2021-06-06T19:08:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.