Quantum Multiplication Algorithm Based on the Convolution Theorem
- URL: http://arxiv.org/abs/2306.08473v2
- Date: Fri, 3 Nov 2023 19:15:34 GMT
- Title: Quantum Multiplication Algorithm Based on the Convolution Theorem
- Authors: Mehdi Ramezani, Morteza Nikaeen, Farnaz Farman, Seyed Mahmoud Ashrafi
and Alireza Bahrampour
- Abstract summary: We propose a quantum algorithm for integer multiplication with time complexity $O(sqrtnlog2 n)$.
Unlike the Harvey algorithm, our algorithm does not have the restriction of being applicable solely to extremely large numbers.
The paper also reviews the history and development of classical multiplication algorithms and motivates us to explore how quantum resources can provide new perspectives and possibilities for this fundamental problem.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The problem of efficient multiplication of large numbers has been a
long-standing challenge in classical computation and has been extensively
studied for centuries. It appears that the existing classical algorithms are
close to their theoretical limit and offer little room for further enhancement.
However, with the advent of quantum computers and the need for quantum
algorithms that can perform multiplication on quantum hardware, a new paradigm
emerges. In this paper, inspired by convolution theorem and quantum amplitude
amplification paradigm we propose a quantum algorithms for integer
multiplication with time complexity $O(\sqrt{n}\log^2 n)$ which outperforms the
best-known classical algorithm, the Harvey algorithm with time complexity of
$O(n \log n)$. Unlike the Harvey algorithm, our algorithm does not have the
restriction of being applicable solely to extremely large numbers, making it a
versatile choice for a wide range of integer multiplication tasks. The paper
also reviews the history and development of classical multiplication algorithms
and motivates us to explore how quantum resources can provide new perspectives
and possibilities for this fundamental problem.
Related papers
- Quantum multi-row iteration algorithm for linear systems with non-square coefficient matrices [7.174256268278207]
We propose a quantum algorithm inspired by the classical multi-row iteration method.
Our algorithm places less demand on the coefficient matrix, making it suitable for solving inconsistent systems.
arXiv Detail & Related papers (2024-09-06T03:32:02Z) - Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
We generalize the quantum Arimoto-Blahut algorithm by Ramakrishnan et al.
We apply our algorithm to the quantum information bottleneck with three quantum systems.
Our numerical analysis shows that our algorithm is better than their algorithm.
arXiv Detail & Related papers (2023-11-19T00:06:11Z) - Opening the Black Box Inside Grover's Algorithm [0.0]
Grover's algorithm is a primary algorithm offered as evidence that quantum computers can provide an advantage over classical computers.
We construct a quantum-inspired algorithm, executable on a classical computer, that performs Grover's task in a linear number of calls to (simulations of) the oracle.
arXiv Detail & Related papers (2023-03-20T17:56:20Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Complexity-Theoretic Limitations on Quantum Algorithms for Topological
Data Analysis [59.545114016224254]
Quantum algorithms for topological data analysis seem to provide an exponential advantage over the best classical approach.
We show that the central task of TDA -- estimating Betti numbers -- is intractable even for quantum computers.
We argue that an exponential quantum advantage can be recovered if the input data is given as a specification of simplices.
arXiv Detail & Related papers (2022-09-28T17:53:25Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Hybrid Quantum-Classical Search Algorithms [0.0]
We show that classical computation, unless it by itself can solve the Search problem, cannot assist quantum computation.
We generalize this result to algorithms with subconstant success probabilities.
arXiv Detail & Related papers (2022-02-23T11:43:17Z) - Quadratic Sieve Factorization Quantum Algorithm and its Simulation [16.296638292223843]
We have designed a quantum variant of the second fastest classical factorization algorithm named "Quadratic Sieve"
We have constructed the simulation framework of quantized quadratic sieve algorithm using high-level programming language Mathematica.
arXiv Detail & Related papers (2020-05-24T07:14:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.