Hybrid Quantum-Classical Search Algorithms
- URL: http://arxiv.org/abs/2202.11443v2
- Date: Tue, 6 Jun 2023 04:38:31 GMT
- Title: Hybrid Quantum-Classical Search Algorithms
- Authors: Ansis Rosmanis
- Abstract summary: We show that classical computation, unless it by itself can solve the Search problem, cannot assist quantum computation.
We generalize this result to algorithms with subconstant success probabilities.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Search is one of the most commonly used primitives in quantum algorithm
design. It is known that quadratic speedups provided by Grover's algorithm are
optimal, and no faster quantum algorithms for Search exist. While it is known
that at least some quantum computation is required to achieve these speedups,
the existing bounds do not rule out the possibility of an equally fast hybrid
quantum-classical algorithm where most of the computation is classical. In this
work, we study such hybrid algorithms and we show that classical computation,
unless it by itself can solve the Search problem, cannot assist quantum
computation. In addition, we generalize this result to algorithms with
subconstant success probabilities.
Related papers
- Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
We generalize the quantum Arimoto-Blahut algorithm by Ramakrishnan et al.
We apply our algorithm to the quantum information bottleneck with three quantum systems.
Our numerical analysis shows that our algorithm is better than their algorithm.
arXiv Detail & Related papers (2023-11-19T00:06:11Z) - Iterative Quantum Algorithms for Maximum Independent Set: A Tale of
Low-Depth Quantum Algorithms [0.0]
We study a new class of hybrid approaches to quantum optimization, termed Iterative Maximum Quantum Algorithms.
We show that for QAOA with depth $p=1$, this algorithm performs exactly the same operations and selections as the classical greedy algorithm for MIS.
arXiv Detail & Related papers (2023-09-22T18:00:03Z) - Quantum Multiplication Algorithm Based on the Convolution Theorem [0.0]
We propose a quantum algorithm for integer multiplication with time complexity $O(sqrtnlog2 n)$.
Unlike the Harvey algorithm, our algorithm does not have the restriction of being applicable solely to extremely large numbers.
The paper also reviews the history and development of classical multiplication algorithms and motivates us to explore how quantum resources can provide new perspectives and possibilities for this fundamental problem.
arXiv Detail & Related papers (2023-06-14T12:40:54Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Recovering the original simplicity: succinct and deterministic quantum
algorithm for the welded tree problem [0.0]
This work revisits quantum algorithms for the well-known welded tree problem.
It proposes a very succinct quantum algorithm based on the simplest coined quantum walks.
arXiv Detail & Related papers (2023-04-17T16:03:50Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Quantum Algorithm For Estimating Eigenvalue [0.0]
We provide a quantum algorithm for estimating the largest eigenvalue in magnitude of a given Hermitian matrix.
Our quantum procedure can also yield exponential speedup compared to classical algorithms that solve the same problem.
arXiv Detail & Related papers (2022-11-11T13:02:07Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Quantum Computing without Quantum Computers: Database Search and Data
Processing Using Classical Wave Superposition [101.18253437732933]
We present experimental data on magnetic database search using spin wave superposition.
We argue that in some cases the classical wave-based approach may provide the same speedup in database search as quantum computers.
arXiv Detail & Related papers (2020-12-15T16:21:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.