論文の概要: Continuous Learning Based Novelty Aware Emotion Recognition System
- arxiv url: http://arxiv.org/abs/2306.08733v1
- Date: Wed, 14 Jun 2023 20:34:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-16 17:19:46.920603
- Title: Continuous Learning Based Novelty Aware Emotion Recognition System
- Title(参考訳): 連続学習に基づく新しい感情認識システム
- Authors: Mijanur Palash, Bharat Bhargava
- Abstract要約: 人間の感情認識における現在の研究は、新奇性を考慮せずに厳格な規則によって統治される伝統的な閉学習アプローチに従っている。
本研究では,自動感情認識タスクにおける新規性に対処する継続的学習に基づくアプローチを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Current works in human emotion recognition follow the traditional closed
learning approach governed by rigid rules without any consideration of novelty.
Classification models are trained on some collected datasets and expected to
have the same data distribution in the real-world deployment. Due to the fluid
and constantly changing nature of the world we live in, it is possible to have
unexpected and novel sample distribution which can lead the model to fail.
Hence, in this work, we propose a continuous learning based approach to deal
with novelty in the automatic emotion recognition task.
- Abstract(参考訳): 現在の人間の感情認識の研究は、新しさを考慮せずに厳格な規則によって統治される伝統的なクローズドラーニングアプローチに従っている。
分類モデルは、収集されたデータセット上でトレーニングされ、現実世界のデプロイメントで同じデータ分布を持つことが期待される。
私たちが住んでいる世界の流動的で絶えず変化する性質のため、予期せぬ新しいサンプル分布を持つことで、モデルが失敗する可能性がある。
そこで本研究では,自動感情認識タスクの新規性を扱うための継続的学習手法を提案する。
関連論文リスト
- Towards Open-World Gesture Recognition [19.019579924491847]
手首輪デバイスに基づくジェスチャー認識などのジェスチャー認識を含む実世界のアプリケーションでは、データ分布は時間とともに変化する可能性がある。
本稿では,機械学習モデルが新しいタスクに適応できるようにするために,継続学習の利用を提案する。
オープンワールドな手首のジェスチャー認識プロセスの開発を促進するための設計ガイドラインを提供する。
論文 参考訳(メタデータ) (2024-01-20T06:45:16Z) - Continual Learning with Deep Streaming Regularized Discriminant Analysis [0.0]
本稿では,この課題に対する解決法として,正規化判別分析のストリーミング版を提案する。
アルゴリズムを畳み込みニューラルネットワークと組み合わせて、バッチ学習と既存のストリーミング学習アルゴリズムよりも優れていることを実証します。
論文 参考訳(メタデータ) (2023-09-15T12:25:42Z) - A Domain-Agnostic Approach for Characterization of Lifelong Learning
Systems [128.63953314853327]
「生涯学習」システムには,1)継続的学習,2)伝達と適応,3)拡張性があります。
この一連のメトリクスは、様々な複雑な生涯学習システムの開発に役立てることができることを示す。
論文 参考訳(メタデータ) (2023-01-18T21:58:54Z) - Uncertainty-aware Label Distribution Learning for Facial Expression
Recognition [13.321770808076398]
本研究では,不確実性と曖昧性に対する深層モデルのロバスト性を改善するために,新しい不確実性を考慮したラベル分布学習法を提案する。
本手法は深層ネットワークに容易に組み込んで,より訓練の監督と認識精度の向上を図ることができる。
論文 参考訳(メタデータ) (2022-09-21T15:48:41Z) - On Generalizing Beyond Domains in Cross-Domain Continual Learning [91.56748415975683]
ディープニューラルネットワークは、新しいタスクを学んだ後、これまで学んだ知識の破滅的な忘れ込みに悩まされることが多い。
提案手法は、ドメインシフト中の新しいタスクを精度良く学習することで、DomainNetやOfficeHomeといった挑戦的なデータセットで最大10%向上する。
論文 参考訳(メタデータ) (2022-03-08T09:57:48Z) - Task-agnostic Continual Learning with Hybrid Probabilistic Models [75.01205414507243]
分類のための連続学習のためのハイブリッド生成識別手法であるHCLを提案する。
フローは、データの配布を学習し、分類を行い、タスクの変更を特定し、忘れることを避けるために使用される。
本研究では,スプリット-MNIST,スプリット-CIFAR,SVHN-MNISTなどの連続学習ベンチマークにおいて,HCLの強い性能を示す。
論文 参考訳(メタデータ) (2021-06-24T05:19:26Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
ニューラルネットワークのリプレイには、記憶されたサンプルを使ってシーケンシャルなデータのトレーニングが含まれる。
本研究では,これらの補助サンプルをフライ時に生成する手法を提案する。
代わりに、評価されたモデル自体内の学習したサンプルの暗黙の記憶が利用されます。
論文 参考訳(メタデータ) (2020-06-22T15:07:06Z) - Task-Agnostic Online Reinforcement Learning with an Infinite Mixture of
Gaussian Processes [25.513074215377696]
本稿では,連続的なオンラインモデルに基づく強化学習手法を提案する。
未知のタスク境界を持つタスク非依存の問題を解決するためには、事前トレーニングを必要としない。
実験では,本手法は非定常タスクにおける代替手法よりも優れている。
論文 参考訳(メタデータ) (2020-06-19T23:52:45Z) - Guided Uncertainty-Aware Policy Optimization: Combining Learning and
Model-Based Strategies for Sample-Efficient Policy Learning [75.56839075060819]
従来のロボットのアプローチは、環境の正確なモデル、タスクの実行方法の詳細な説明、現在の状態を追跡するための堅牢な認識システムに依存している。
強化学習アプローチは、タスクを記述するための報酬信号だけで、生の感覚入力から直接操作することができるが、非常にサンプル非効率で脆弱である。
本研究では,ロボットの知覚・運動パイプラインにおける不正確さを克服できる一般的な手法を得るために,モデルに基づく手法の強みと学習に基づく手法の柔軟性を組み合わせる。
論文 参考訳(メタデータ) (2020-05-21T19:47:05Z) - A Neural Dirichlet Process Mixture Model for Task-Free Continual
Learning [48.87397222244402]
タスクフリー連続学習のための拡張型アプローチを提案する。
我々のモデルは、識別的タスクと生成的タスクの両方に対してタスクフリー連続学習を成功させる。
論文 参考訳(メタデータ) (2020-01-03T02:07:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。