論文の概要: Probabilistic-based Feature Embedding of 4-D Light Fields for
Compressive Imaging and Denoising
- arxiv url: http://arxiv.org/abs/2306.08836v3
- Date: Thu, 11 Jan 2024 03:26:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-13 03:53:26.987622
- Title: Probabilistic-based Feature Embedding of 4-D Light Fields for
Compressive Imaging and Denoising
- Title(参考訳): 圧縮画像とノイズ除去のための4次元光野の確率論的特徴埋め込み
- Authors: Xianqiang Lyu and Junhui Hou
- Abstract要約: 4次元光電場(LF)は、効率的で効果的な機能埋め込みを実現する上で大きな課題となる。
様々な低次元畳み込みパターンを組み立てることで特徴埋め込みアーキテクチャを学習する確率論的特徴埋め込み(PFE)を提案する。
実世界および合成4次元LF画像において,本手法の有意な優位性を実証した。
- 参考スコア(独自算出の注目度): 62.347491141163225
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The high-dimensional nature of the 4-D light field (LF) poses great
challenges in achieving efficient and effective feature embedding, that
severely impacts the performance of downstream tasks. To tackle this crucial
issue, in contrast to existing methods with empirically-designed architectures,
we propose a probabilistic-based feature embedding (PFE), which learns a
feature embedding architecture by assembling various low-dimensional
convolution patterns in a probability space for fully capturing spatial-angular
information. Building upon the proposed PFE, we then leverage the intrinsic
linear imaging model of the coded aperture camera to construct a
cycle-consistent 4-D LF reconstruction network from coded measurements.
Moreover, we incorporate PFE into an iterative optimization framework for 4-D
LF denoising. Our extensive experiments demonstrate the significant superiority
of our methods on both real-world and synthetic 4-D LF images, both
quantitatively and qualitatively, when compared with state-of-the-art methods.
The source code will be publicly available at
https://github.com/lyuxianqiang/LFCA-CR-NET.
- Abstract(参考訳): 4次元ライトフィールド(lf)の高次元性は、効率良く効果的な機能埋め込みを達成する上で大きな課題となり、下流タスクのパフォーマンスに大きな影響を与える。
この課題に対処するために、経験的設計の既存手法とは対照的に、空間角情報を完全にキャプチャする確率空間に様々な低次元畳み込みパターンを組み込んで特徴埋め込みアーキテクチャを学習する確率論的特徴埋め込み(PFE)を提案する。
提案したPFEに基づいて,符号化開口カメラの固有線形画像モデルを用いて,周期整合型4次元LF再構成ネットワークを構築する。
さらに,PFEを4次元LF復調のための反復最適化フレームワークに組み込む。
本研究は,実世界および合成4次元lf画像において,最先端手法と比較して定量的,質的にも優れた方法を示す。
ソースコードはhttps://github.com/lyuxianqiang/LFCA-CR-NETで公開されている。
関連論文リスト
- LGFN: Lightweight Light Field Image Super-Resolution using Local Convolution Modulation and Global Attention Feature Extraction [5.461017270708014]
本稿では,LGFN という軽量なモデルを提案する。このモデルでは,異なるビューの局所的特徴とグローバル的特徴と,LF 画像 SR のための異なるチャネルの特徴を統合している。
我々のモデルは0.45Mのパラメータと19.33GのFLOPを持つ。
論文 参考訳(メタデータ) (2024-09-26T11:53:25Z) - Enhancing Underwater Imaging with 4-D Light Fields: Dataset and Method [77.80712860663886]
4次元光場(LF)は、光吸収、散乱、その他の課題に悩まされる水中イメージングを強化する。
水中4次元LF画像強調と深度推定のためのプログレッシブフレームワークを提案する。
学習手法の定量的評価と教師あり訓練のための,最初の4次元LFに基づく水中画像データセットを構築した。
論文 参考訳(メタデータ) (2024-08-30T15:06:45Z) - Enhancing Low-light Light Field Images with A Deep Compensation Unfolding Network [52.77569396659629]
本稿では,低光環境下で撮像した光場(LF)画像の復元に,DCUNet(Deep compensation network openfolding)を提案する。
このフレームワークは、中間拡張結果を使用して照明マップを推定し、展開プロセスで新しい拡張結果を生成する。
本稿では,LF画像の特徴を適切に活用するために,擬似明示的特徴相互作用モジュールを提案する。
論文 参考訳(メタデータ) (2023-08-10T07:53:06Z) - Physics-Informed Ensemble Representation for Light-Field Image
Super-Resolution [12.156009287223382]
我々は、光場(LF)撮像プロセスの座標変換を分析し、LF画像の幾何学的関係を明らかにする。
我々は,仮想スリット画像(VSI)の新たなLF部分空間を導入し,サブアパーチャ画像に補完するサブピクセル情報を提供する。
アンサンプされたLFデータから画像構造を超解き出すために,EPIXformer という幾何認識デコーダを提案する。
論文 参考訳(メタデータ) (2023-05-31T16:27:00Z) - Disentangling Light Fields for Super-Resolution and Disparity Estimation [67.50796924758221]
光フィールド(LF)カメラは光線の強度と方向の両方を記録し、3Dシーンを4DLF画像にエンコードする。
空間的・角的な情報は様々な相違で高度に絡み合っているため、畳み込みニューラルネットワーク(CNN)がLF画像を処理することは困難である。
本稿では,この結合した情報をLF画像処理のために切り離すための汎用メカニズムを提案する。
論文 参考訳(メタデータ) (2022-02-22T01:04:41Z) - Light Field Reconstruction via Deep Adaptive Fusion of Hybrid Lenses [67.01164492518481]
本稿では,ハイブリットレンズを用いた高分解能光場(LF)画像の再構成問題について検討する。
本稿では,入力の特徴を包括的に活用できる新しいエンドツーエンド学習手法を提案する。
我々のフレームワークは、高解像度なLFデータ取得のコストを削減し、LFデータストレージと送信の恩恵を受ける可能性がある。
論文 参考訳(メタデータ) (2021-02-14T06:44:47Z) - Light Field Spatial Super-resolution via Deep Combinatorial Geometry
Embedding and Structural Consistency Regularization [99.96632216070718]
ハンドヘルドデバイスが取得した光フィールド(LF)画像は通常、空間分解能の低下に悩まされる。
LF画像の高次元空間特性と複雑な幾何学構造は、従来の単一像SRよりも問題をより困難にしている。
本稿では,LF画像の各ビューを個別に超解答する新しい学習ベースLFフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-05T14:39:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。