論文の概要: One-Shot Learning of Visual Path Navigation for Autonomous Vehicles
- arxiv url: http://arxiv.org/abs/2306.08865v1
- Date: Thu, 15 Jun 2023 05:27:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-16 16:35:30.675446
- Title: One-Shot Learning of Visual Path Navigation for Autonomous Vehicles
- Title(参考訳): 自動車用視覚経路ナビゲーションのワンショット学習
- Authors: Zhongying CuiZhu, Francois Charette, Amin Ghafourian, Debo Shi,
Matthew Cui, Anjali Krishnamachar, Iman Soltani
- Abstract要約: 本稿では,イメージ・ツー・ステアリング・パスのナビゲーションを行う新しいディープニューラルネットワークを提案する。
システムにワンショットの学習を追加することで、データの問題に対処する。
提案したナビゲーションの性能を検証するために、車内テストとオフラインテストが使用される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous driving presents many challenges due to the large number of
scenarios the autonomous vehicle (AV) may encounter. End-to-end deep learning
models are comparatively simplistic models that can handle a broad set of
scenarios. However, end-to-end models require large amounts of diverse data to
perform well. This paper presents a novel deep neural network that performs
image-to-steering path navigation that helps with the data problem by adding
one-shot learning to the system. Presented with a previously unseen path, the
vehicle can drive the path autonomously after being shown the path once and
without model retraining. In fact, the full path is not needed and images of
the road junctions is sufficient. In-vehicle testing and offline testing are
used to verify the performance of the proposed navigation and to compare
different candidate architectures.
- Abstract(参考訳): 自律運転は、自律走行車(AV)が直面する多くのシナリオのために、多くの課題を提起する。
エンドツーエンドのディープラーニングモデルは比較的単純なモデルで、幅広いシナリオを処理できる。
しかし、エンド・ツー・エンドのモデルには大量の多様なデータが必要である。
本稿では,一発学習をシステムに追加することにより,データ問題に対処するための画像対ステアリングパスナビゲーションを行う,新しい深層ニューラルネットワークを提案する。
未発見の経路を提示すると、車両はモデルの再訓練なしに一度だけ経路を見せた後、自律的に経路を走行することができる。
実際、全経路は不要であり、道路の分岐点の画像は十分である。
車内テストとオフラインテストは、提案されたナビゲーションのパフォーマンスの検証と、異なる候補アーキテクチャの比較に使用される。
関連論文リスト
- DiffRoad: Realistic and Diverse Road Scenario Generation for Autonomous Vehicle Testing [12.964224581549281]
DiffRoadは、制御可能で高忠実な3D道路シナリオを生成するために設計された、新しい拡散モデルである。
Road-UNetアーキテクチャは、バックボーンとスキップ接続のバランスを最適化し、高現実性シナリオを生成する。
生成されたシナリオはOpenDRIVEフォーマットで完全に自動化できる。
論文 参考訳(メタデータ) (2024-11-14T13:56:02Z) - UdeerLID+: Integrating LiDAR, Image, and Relative Depth with Semi-Supervised [12.440461420762265]
道路分割は自動運転システムにとって重要な課題である。
我々の研究は、LiDARポイントクラウドデータ、ビジュアルイメージ、および相対深度マップを統合する革新的なアプローチを導入している。
主な課題の1つは、大規模で正確にラベル付けされたデータセットの不足である。
論文 参考訳(メタデータ) (2024-09-10T03:57:30Z) - Guiding Attention in End-to-End Driving Models [49.762868784033785]
模倣学習によって訓練された視覚ベースのエンドツーエンドの運転モデルは、自動運転のための安価なソリューションにつながる可能性がある。
トレーニング中に損失項を追加することにより、これらのモデルの注意を誘導し、運転品質を向上させる方法について検討する。
従来の研究とは対照的に,本手法では,テスト期間中にこれらの有意義なセマンティックマップを利用できない。
論文 参考訳(メタデータ) (2024-04-30T23:18:51Z) - Drive Anywhere: Generalizable End-to-end Autonomous Driving with
Multi-modal Foundation Models [114.69732301904419]
本稿では、画像とテキストで検索可能な表現から、運転決定を提供することができる、エンドツーエンドのオープンセット(環境/シーン)自律運転を適用するアプローチを提案する。
当社のアプローチでは, 多様なテストにおいて非並列的な結果を示すと同時に, アウト・オブ・ディストリビューションの状況において, はるかに高いロバスト性を実現している。
論文 参考訳(メタデータ) (2023-10-26T17:56:35Z) - Safe Navigation: Training Autonomous Vehicles using Deep Reinforcement
Learning in CARLA [0.0]
このプロジェクトの目的は、深層強化学習技術を用いて、不確実な環境での走行を判断できるように自動運転車を訓練することである。
シミュレータは、自動運転モデルのトレーニングとテストのための現実的で都市環境を提供する。
論文 参考訳(メタデータ) (2023-10-23T04:23:07Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - Learning a Model for Inferring a Spatial Road Lane Network Graph using
Self-Supervision [10.819463015526832]
本稿では,空間的に接地された車線レベル道路網グラフを推定するためにモデルを訓練する最初の自己教師型学習手法を提案する。
フォーマルな路面ネットワークモデルを示し、最も深度3の有向非巡回グラフで任意の構造化道路シーンを表現できることを証明した。
結果から,本モデルは従来のアプローチとは異なり,新たな道路レイアウトに一般化できることが示唆された。
論文 参考訳(メタデータ) (2021-07-05T04:34:51Z) - SODA10M: Towards Large-Scale Object Detection Benchmark for Autonomous
Driving [94.11868795445798]
我々は,SODA10Mという名の自律走行用大規模物体検出ベンチマークをリリースし,1000万枚の未ラベル画像と6つの代表対象カテゴリをラベル付けした20K画像を含む。
多様性を向上させるために、画像は32の異なる都市で、1フレームあたり10秒毎に異なる気象条件、期間、場所のシーンで収集される。
我々は、既存の教師付き最先端検出モデル、一般的な自己監督型および半教師付きアプローチ、および将来のモデルの開発方法に関するいくつかの知見について、広範な実験と詳細な分析を行った。
論文 参考訳(メタデータ) (2021-06-21T13:55:57Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
実画像中の車両に動的部品を付加した3次元自動車モデルによる効果的なトレーニングデータ生成プロセスを提案する。
私達のアプローチは人間の相互作用なしで完全に自動です。
VUS解析用マルチタスクネットワークとVHI解析用マルチストリームネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-15T03:03:38Z) - VehicleNet: Learning Robust Visual Representation for Vehicle
Re-identification [116.1587709521173]
我々は,4つのパブリックな車両データセットを活用することで,大規模車両データセット(VabyNet)を構築することを提案する。
VehicleNetからより堅牢な視覚表現を学習するための、シンプルで効果的な2段階プログレッシブアプローチを設計する。
AICity Challengeのプライベートテストセットにおいて,最先端の精度86.07%mAPを実現した。
論文 参考訳(メタデータ) (2020-04-14T05:06:38Z) - PLOP: Probabilistic poLynomial Objects trajectory Planning for
autonomous driving [8.105493956485583]
条件付き模倣学習アルゴリズムを用いて,エゴ車とその周辺地域の軌道を推定する。
私たちのアプローチは計算効率が高く、オンボードセンサーのみに依存します。
公開データセットnuScenesでオフラインで評価する。
論文 参考訳(メタデータ) (2020-03-09T16:55:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。