Partial-Label Regression
- URL: http://arxiv.org/abs/2306.08968v1
- Date: Thu, 15 Jun 2023 09:02:24 GMT
- Title: Partial-Label Regression
- Authors: Xin Cheng and Deng-Bao Wang and Lei Feng and Min-Ling Zhang and Bo An
- Abstract summary: Partial-label learning is a weakly supervised learning setting that allows each training example to be annotated with a set of candidate labels.
Previous studies on partial-label learning only focused on the classification setting where candidate labels are all discrete.
In this paper, we provide the first attempt to investigate partial-label regression, where each training example is annotated with a set of real-valued candidate labels.
- Score: 54.74984751371617
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Partial-label learning is a popular weakly supervised learning setting that
allows each training example to be annotated with a set of candidate labels.
Previous studies on partial-label learning only focused on the classification
setting where candidate labels are all discrete, which cannot handle continuous
labels with real values. In this paper, we provide the first attempt to
investigate partial-label regression, where each training example is annotated
with a set of real-valued candidate labels. To solve this problem, we first
propose a simple baseline method that takes the average loss incurred by
candidate labels as the predictive loss. The drawback of this method lies in
that the loss incurred by the true label may be overwhelmed by other false
labels. To overcome this drawback, we propose an identification method that
takes the least loss incurred by candidate labels as the predictive loss. We
further improve it by proposing a progressive identification method to
differentiate candidate labels using progressively updated weights for incurred
losses. We prove that the latter two methods are model-consistent and provide
convergence analyses. Our proposed methods are theoretically grounded and can
be compatible with any models, optimizers, and losses. Experiments validate the
effectiveness of our proposed methods.
Related papers
- Reduction-based Pseudo-label Generation for Instance-dependent Partial Label Learning [41.345794038968776]
We propose to leverage reduction-based pseudo-labels to alleviate the influence of incorrect candidate labels.
We show that reduction-based pseudo-labels exhibit greater consistency with the Bayes optimal classifier compared to pseudo-labels directly generated from the predictive model.
arXiv Detail & Related papers (2024-10-28T07:32:20Z) - Generating Unbiased Pseudo-labels via a Theoretically Guaranteed
Chebyshev Constraint to Unify Semi-supervised Classification and Regression [57.17120203327993]
threshold-to-pseudo label process (T2L) in classification uses confidence to determine the quality of label.
In nature, regression also requires unbiased methods to generate high-quality labels.
We propose a theoretically guaranteed constraint for generating unbiased labels based on Chebyshev's inequality.
arXiv Detail & Related papers (2023-11-03T08:39:35Z) - Dist-PU: Positive-Unlabeled Learning from a Label Distribution
Perspective [89.5370481649529]
We propose a label distribution perspective for PU learning in this paper.
Motivated by this, we propose to pursue the label distribution consistency between predicted and ground-truth label distributions.
Experiments on three benchmark datasets validate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-12-06T07:38:29Z) - Meta Objective Guided Disambiguation for Partial Label Learning [44.05801303440139]
We propose a novel framework for partial label learning with meta objective guided disambiguation (MoGD)
MoGD aims to recover the ground-truth label from candidate labels set by solving a meta objective on a small validation set.
The proposed method can be easily implemented by using various deep networks with the ordinary SGD.
arXiv Detail & Related papers (2022-08-26T06:48:01Z) - Decomposition-based Generation Process for Instance-Dependent Partial
Label Learning [45.133781119468836]
Partial label learning (PLL) is a typical weakly supervised learning problem, where each training example is associated with a set of candidate labels among which only one is true.
Most existing approaches assume that the incorrect labels in each training example are randomly picked as the candidate labels and model the generation process of the candidate labels in a simple way.
We propose Maximum A Posterior(MAP) based on an explicitly modeled generation process of candidate labels.
arXiv Detail & Related papers (2022-04-08T05:18:51Z) - Learning with Proper Partial Labels [87.65718705642819]
Partial-label learning is a kind of weakly-supervised learning with inexact labels.
We show that this proper partial-label learning framework includes many previous partial-label learning settings.
We then derive a unified unbiased estimator of the classification risk.
arXiv Detail & Related papers (2021-12-23T01:37:03Z) - Instance-Dependent Partial Label Learning [69.49681837908511]
Partial label learning is a typical weakly supervised learning problem.
Most existing approaches assume that the incorrect labels in each training example are randomly picked as the candidate labels.
In this paper, we consider instance-dependent and assume that each example is associated with a latent label distribution constituted by the real number of each label.
arXiv Detail & Related papers (2021-10-25T12:50:26Z) - Disentangling Sampling and Labeling Bias for Learning in Large-Output
Spaces [64.23172847182109]
We show that different negative sampling schemes implicitly trade-off performance on dominant versus rare labels.
We provide a unified means to explicitly tackle both sampling bias, arising from working with a subset of all labels, and labeling bias, which is inherent to the data due to label imbalance.
arXiv Detail & Related papers (2021-05-12T15:40:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.