Improving Multi-Label Contrastive Learning by Leveraging Label Distribution
- URL: http://arxiv.org/abs/2501.19145v1
- Date: Fri, 31 Jan 2025 14:00:02 GMT
- Title: Improving Multi-Label Contrastive Learning by Leveraging Label Distribution
- Authors: Ning Chen, Shen-Huan Lyu, Tian-Shuang Wu, Yanyan Wang, Bin Tang,
- Abstract summary: In multi-label learning, leveraging contrastive learning to learn better representations faces a key challenge: selecting positive and negative samples.
Previous studies selected positive and negative samples based on the overlap between labels and used them for label-wise loss balancing.
We propose a novel method that improves multi-label contrastive learning through label distribution.
- Score: 13.276821681189166
- License:
- Abstract: In multi-label learning, leveraging contrastive learning to learn better representations faces a key challenge: selecting positive and negative samples and effectively utilizing label information. Previous studies selected positive and negative samples based on the overlap between labels and used them for label-wise loss balancing. However, these methods suffer from a complex selection process and fail to account for the varying importance of different labels. To address these problems, we propose a novel method that improves multi-label contrastive learning through label distribution. Specifically, when selecting positive and negative samples, we only need to consider whether there is an intersection between labels. To model the relationships between labels, we introduce two methods to recover label distributions from logical labels, based on Radial Basis Function (RBF) and contrastive loss, respectively. We evaluate our method on nine widely used multi-label datasets, including image and vector datasets. The results demonstrate that our method outperforms state-of-the-art methods in six evaluation metrics.
Related papers
- Partial-Label Regression [54.74984751371617]
Partial-label learning is a weakly supervised learning setting that allows each training example to be annotated with a set of candidate labels.
Previous studies on partial-label learning only focused on the classification setting where candidate labels are all discrete.
In this paper, we provide the first attempt to investigate partial-label regression, where each training example is annotated with a set of real-valued candidate labels.
arXiv Detail & Related papers (2023-06-15T09:02:24Z) - Contrastive Label Enhancement [13.628665406039609]
We propose Contrastive Label Enhancement (ConLE) to generate high-level features by contrastive learning strategy.
We leverage the obtained high-level features to gain label distributions through a welldesigned training strategy.
arXiv Detail & Related papers (2023-05-16T14:53:07Z) - Learning from Stochastic Labels [8.178975818137937]
Annotating multi-class instances is a crucial task in the field of machine learning.
In this paper, we propose a novel suitable approach to learn from these labels.
arXiv Detail & Related papers (2023-02-01T08:04:27Z) - Dist-PU: Positive-Unlabeled Learning from a Label Distribution
Perspective [89.5370481649529]
We propose a label distribution perspective for PU learning in this paper.
Motivated by this, we propose to pursue the label distribution consistency between predicted and ground-truth label distributions.
Experiments on three benchmark datasets validate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-12-06T07:38:29Z) - One Positive Label is Sufficient: Single-Positive Multi-Label Learning
with Label Enhancement [71.9401831465908]
We investigate single-positive multi-label learning (SPMLL) where each example is annotated with only one relevant label.
A novel method named proposed, i.e., Single-positive MultI-label learning with Label Enhancement, is proposed.
Experiments on benchmark datasets validate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-06-01T14:26:30Z) - Acknowledging the Unknown for Multi-label Learning with Single Positive
Labels [65.5889334964149]
Traditionally, all unannotated labels are assumed as negative labels in single positive multi-label learning (SPML)
We propose entropy-maximization (EM) loss to maximize the entropy of predicted probabilities for all unannotated labels.
Considering the positive-negative label imbalance of unannotated labels, we propose asymmetric pseudo-labeling (APL) with asymmetric-tolerance strategies and a self-paced procedure to provide more precise supervision.
arXiv Detail & Related papers (2022-03-30T11:43:59Z) - Learning with Proper Partial Labels [87.65718705642819]
Partial-label learning is a kind of weakly-supervised learning with inexact labels.
We show that this proper partial-label learning framework includes many previous partial-label learning settings.
We then derive a unified unbiased estimator of the classification risk.
arXiv Detail & Related papers (2021-12-23T01:37:03Z) - Disentangling Sampling and Labeling Bias for Learning in Large-Output
Spaces [64.23172847182109]
We show that different negative sampling schemes implicitly trade-off performance on dominant versus rare labels.
We provide a unified means to explicitly tackle both sampling bias, arising from working with a subset of all labels, and labeling bias, which is inherent to the data due to label imbalance.
arXiv Detail & Related papers (2021-05-12T15:40:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.