論文の概要: Enhanced Sampling with Machine Learning: A Review
- arxiv url: http://arxiv.org/abs/2306.09111v2
- Date: Fri, 16 Jun 2023 15:18:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-19 10:40:50.304398
- Title: Enhanced Sampling with Machine Learning: A Review
- Title(参考訳): 機械学習によるサンプリングの強化:レビュー
- Authors: Shams Mehdi, Zachary Smith, Lukas Herron, Ziyue Zou and Pratyush
Tiwary
- Abstract要約: 分子動力学(MD)は、優れた解像度を持つ物理サンプリングシステムの研究を可能にするが、厳しい時間スケールの制限に悩まされる。
これを解決するため,探索時間空間を改善するため,改良されたサンプリング手法が開発されている。
近年,機械学習(ML)技術がさまざまな分野に統合されることが約束されている。
本稿では,MLの融合とMDの強化について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Molecular dynamics (MD) enables the study of physical systems with excellent
spatiotemporal resolution but suffers from severe time-scale limitations. To
address this, enhanced sampling methods have been developed to improve
exploration of configurational space. However, implementing these is
challenging and requires domain expertise. In recent years, integration of
machine learning (ML) techniques in different domains has shown promise,
prompting their adoption in enhanced sampling as well. Although ML is often
employed in various fields primarily due to its data-driven nature, its
integration with enhanced sampling is more natural with many common underlying
synergies. This review explores the merging of ML and enhanced MD by presenting
different shared viewpoints. It offers a comprehensive overview of this rapidly
evolving field, which can be difficult to stay updated on. We highlight
successful strategies like dimensionality reduction, reinforcement learning,
and flow-based methods. Finally, we discuss open problems at the exciting
ML-enhanced MD interface.
- Abstract(参考訳): 分子動力学(md)は時空間分解能に優れた物理系の研究を可能にするが、時間スケールの厳しい制限に苦しむ。
これに対処するため、構成空間の探索を改善するために拡張サンプリング法が開発されている。
しかし、これらの実装は困難であり、ドメインの専門知識が必要です。
近年、さまざまなドメインにおける機械学習(ML)技術の統合は、将来性を示し、サンプリングの強化も促進されている。
MLは、主にデータ駆動性のために様々な分野で使用されることが多いが、強化されたサンプリングとの統合は、多くの基礎となるシナジーとより自然なものである。
本稿では,MLの融合とMDの強化について検討する。
この急速に発展するこの分野の包括的な概要を提供しており、更新を続けるのは難しい。
我々は,次元削減,強化学習,フローベース手法などの成功戦略を強調した。
最後に、エキサイティングなML強化MDインタフェースにおけるオープン問題について議論する。
関連論文リスト
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
クロスモーダル推論(CMR)は、より高度な人工知能システムへの進化における重要な能力として、ますます認識されている。
CMRタスクに取り組むためにLLM(Large Language Models)をデプロイする最近のトレンドは、その有効性を高めるためのアプローチの新たな主流となっている。
本調査では,LLMを用いてCMRで適用された現在の方法論を,詳細な3階層分類に分類する。
論文 参考訳(メタデータ) (2024-09-19T02:51:54Z) - Multimodal Large Language Models for Bioimage Analysis [39.120941702559726]
MLLM(Multimodal Large Language Models)は、理解、分析、推論、一般化など、創発的な能力を示す。
これらの能力により、MLLMは生物学的画像や様々なモダリティによって得られたデータから複雑な情報を抽出することを約束する。
MLLMの開発は、生物学研究における人間の研究者を増強するためのインテリジェントアシスタントやエージェントとしての役割において、公約が増していることを示している。
論文 参考訳(メタデータ) (2024-07-29T08:21:25Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
実世界のアプリケーションでは,音声およびビデオデータに基づくマルチモーダル感情認識が重要である。
近年の手法は、強力なマルチモーダルエンコーダの事前学習に自己教師付き学習(SSL)の進歩を活用することに重点を置いている。
SSL-pre-trained disimodal encoders を用いて,この問題に対する異なる視点とマルチモーダル DFER の性能向上について検討する。
論文 参考訳(メタデータ) (2024-04-13T13:39:26Z) - Structured Pruning of Neural Networks for Constraints Learning [5.689013857168641]
MIPへの統合に先立って,これらの手法の1つであるプルーニングの有効性を示す。
我々は、複数の層を持つフィードフォワードニューラルネットワークを用いて実験を行い、敵の例を構築した。
以上の結果から,プルーニングは最終決定の質を損なうことなく,解時間を大幅に短縮することを示した。
論文 参考訳(メタデータ) (2023-07-14T16:36:49Z) - A Survey on Learnable Evolutionary Algorithms for Scalable
Multiobjective Optimization [0.0]
多目的進化アルゴリズム(MOEA)は、様々な多目的最適化問題(MOP)を解決するために採用されている。
しかし、これらの進歩的に改善されたMOEAは、必ずしも高度にスケーラブルで学習可能な問題解決戦略を備えていない。
異なるシナリオの下では、効果的に解決するための新しい強力なMOEAを設計する必要がある。
MOPをスケールアップするための機械学習技術で自身を操る学習可能なMOEAの研究は、進化計算の分野で広く注目を集めている。
論文 参考訳(メタデータ) (2022-06-23T08:16:01Z) - Deep Learning in Multimodal Remote Sensing Data Fusion: A Comprehensive
Review [33.40031994803646]
本調査は,DLに基づくマルチモーダルRSデータ融合の体系的概要を示すことを目的としている。
マルチモーダルRSデータ融合におけるサブフィールドについて,to-be-fusedデータモダリティの観点から検討する。
残る課題と今後の方向性が強調される。
論文 参考訳(メタデータ) (2022-05-03T09:08:16Z) - Domain Generalization for Mammography Detection via Multi-style and
Multi-view Contrastive Learning [47.30824944649112]
限られたリソースを持つ様々なベンダーに対して,ディープラーニングモデルの一般化能力を高めるために,新しいコントラスト学習手法を開発した。
バックボーンネットワークは、さまざまなベンダースタイルに不変機能を組み込むために、マルチスタイルでマルチビューで教師なしの自己学習スキームで訓練されている。
実験結果から,本手法は目視領域と目視領域の両方における検出性能を効果的に向上する可能性が示唆された。
論文 参考訳(メタデータ) (2021-11-21T14:29:50Z) - MAML is a Noisy Contrastive Learner [72.04430033118426]
モデルに依存しないメタラーニング(MAML)は、今日では最も人気があり広く採用されているメタラーニングアルゴリズムの1つである。
我々は、MAMLの動作メカニズムに対する新たな視点を提供し、以下に示すように、MAMLは、教師付きコントラスト目的関数を用いたメタラーナーに類似している。
このような干渉を軽減するため, 単純だが効果的な手法であるゼロ化手法を提案する。
論文 参考訳(メタデータ) (2021-06-29T12:52:26Z) - Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
Progression [71.7560927415706]
潜在ハイブリッドモデル(LHM)は、専門家が設計したODEのシステムと機械学習したNeural ODEを統合し、システムのダイナミクスを完全に記述する。
新型コロナウイルス患者のLHMと実世界の集中治療データについて検討した。
論文 参考訳(メタデータ) (2021-06-05T11:42:45Z) - Interpretable Hyperspectral AI: When Non-Convex Modeling meets
Hyperspectral Remote Sensing [57.52865154829273]
ハイパースペクトルイメージング、別名画像分光法は、地球科学リモートセンシング(RS)におけるランドマーク技術です。
過去10年間で、主に熟練した専門家によってこれらのハイパースペクトル(HS)製品を分析するための取り組みが行われています。
このため、さまざまなHS RSアプリケーションのためのよりインテリジェントで自動的なアプローチを開発することが急務です。
論文 参考訳(メタデータ) (2021-03-02T03:32:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。