Hyperbolic Representation Learning: Revisiting and Advancing
- URL: http://arxiv.org/abs/2306.09118v1
- Date: Thu, 15 Jun 2023 13:25:39 GMT
- Title: Hyperbolic Representation Learning: Revisiting and Advancing
- Authors: Menglin Yang, Min Zhou, Rex Ying, Yankai Chen, Irwin King
- Abstract summary: We introduce a position-tracking mechanism to scrutinize existing prevalent hlms, revealing that the learned representations are sub-optimal and unsatisfactory.
We propose a simple yet effective method, hyperbolic informed embedding (HIE), by incorporating cost-free hierarchical information deduced from the hyperbolic distance of the node to origin.
Our method achieves a remarkable improvement of up to 21.4% compared to the competing baselines.
- Score: 43.1661098138936
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The non-Euclidean geometry of hyperbolic spaces has recently garnered
considerable attention in the realm of representation learning. Current
endeavors in hyperbolic representation largely presuppose that the underlying
hierarchies can be automatically inferred and preserved through the adaptive
optimization process. This assumption, however, is questionable and requires
further validation. In this work, we first introduce a position-tracking
mechanism to scrutinize existing prevalent \hlms, revealing that the learned
representations are sub-optimal and unsatisfactory. To address this, we propose
a simple yet effective method, hyperbolic informed embedding (HIE), by
incorporating cost-free hierarchical information deduced from the hyperbolic
distance of the node to origin (i.e., induced hyperbolic norm) to advance
existing \hlms. The proposed method HIE is both task-agnostic and
model-agnostic, enabling its seamless integration with a broad spectrum of
models and tasks. Extensive experiments across various models and different
tasks demonstrate the versatility and adaptability of the proposed method.
Remarkably, our method achieves a remarkable improvement of up to 21.4\%
compared to the competing baselines.
Related papers
- From Semantics to Hierarchy: A Hybrid Euclidean-Tangent-Hyperbolic Space Model for Temporal Knowledge Graph Reasoning [1.1372536310854844]
Temporal knowledge graph (TKG) reasoning predicts future events based on historical data.
Existing Euclidean models excel at capturing semantics but struggle with hierarchy.
We propose a novel hybrid geometric space approach that leverages the strengths of both Euclidean and hyperbolic models.
arXiv Detail & Related papers (2024-08-30T10:33:08Z) - Visual Prompt Tuning in Null Space for Continual Learning [51.96411454304625]
Existing prompt-tuning methods have demonstrated impressive performances in continual learning (CL)
This paper aims to learn each task by tuning the prompts in the direction orthogonal to the subspace spanned by previous tasks' features.
In practice, an effective null-space-based approximation solution has been proposed to implement the prompt gradient projection.
arXiv Detail & Related papers (2024-06-09T05:57:40Z) - A Closer Look at the Few-Shot Adaptation of Large Vision-Language Models [19.17722702457403]
We show that state-of-the-artETL approaches exhibit strong performance only in narrowly-defined experimental setups.
We propose a CLass-Adaptive linear Probe (CLAP) objective, whose balancing term is optimized via an adaptation of the general Augmented Lagrangian method.
arXiv Detail & Related papers (2023-12-20T02:58:25Z) - Hyperbolic vs Euclidean Embeddings in Few-Shot Learning: Two Sides of
the Same Coin [49.12496652756007]
We show that the best few-shot results are attained for hyperbolic embeddings at a common hyperbolic radius.
In contrast to prior benchmark results, we demonstrate that better performance can be achieved by a fixed-radius encoder equipped with the Euclidean metric.
arXiv Detail & Related papers (2023-09-18T14:51:46Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - HMSN: Hyperbolic Self-Supervised Learning by Clustering with Ideal
Prototypes [7.665392786787577]
We use hyperbolic representation space for self-supervised representation learning for prototype-based clustering approaches.
We extend the Masked Siamese Networks to operate on the Poincar'e ball model of hyperbolic space.
Unlike previous methods we project to the hyperbolic space at the output of the encoder network and utilise a hyperbolic projection head to ensure that the representations used for downstream tasks remain hyperbolic.
arXiv Detail & Related papers (2023-05-18T12:38:40Z) - HRCF: Enhancing Collaborative Filtering via Hyperbolic Geometric
Regularization [52.369435664689995]
We introduce a textitHyperbolic Regularization powered Collaborative Filtering (HRCF) and design a geometric-aware hyperbolic regularizer.
Specifically, the proposal boosts optimization procedure via the root alignment and origin-aware penalty.
Our proposal is able to tackle the over-smoothing problem caused by hyperbolic aggregation and also brings the models a better discriminative ability.
arXiv Detail & Related papers (2022-04-18T06:11:44Z) - Provably Accurate and Scalable Linear Classifiers in Hyperbolic Spaces [39.71927912296049]
We propose a unified framework for learning scalable and simple hyperbolic linear classifiers.
The gist of our approach is to focus on Poincar'e ball models and formulate the classification problems using tangent space formalisms.
The excellent performance of the Poincar'e second-order and strategic perceptrons shows that the proposed framework can be extended to general machine learning problems in hyperbolic spaces.
arXiv Detail & Related papers (2022-03-07T21:36:21Z) - Hyperbolic Manifold Regression [33.40757136529844]
We consider the problem of performing manifold-valued regression onto an hyperbolic space as an intermediate component for a number of relevant machine learning applications.
We propose a novel perspective on two challenging tasks: 1) hierarchical classification via label embeddings and 2) taxonomy extension of hyperbolic representations.
Our experiments show that the strategy of leveraging the hyperbolic geometry is promising.
arXiv Detail & Related papers (2020-05-28T10:16:30Z) - Differentiating through the Fr\'echet Mean [51.32291896926807]
Fr'echet mean is a generalization of the Euclidean mean.
We show how to differentiate through the Fr'echet mean for arbitrary Riemannian manifold.
This fully integrates the Fr'echet mean into the hyperbolic neural network pipeline.
arXiv Detail & Related papers (2020-02-29T19:49:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.