Machine Unlearning in Hyperbolic vs. Euclidean Multimodal Contrastive Learning: Adapting Alignment Calibration to MERU
- URL: http://arxiv.org/abs/2503.15166v2
- Date: Mon, 14 Apr 2025 08:38:46 GMT
- Title: Machine Unlearning in Hyperbolic vs. Euclidean Multimodal Contrastive Learning: Adapting Alignment Calibration to MERU
- Authors: Àlex Pujol Vidal, Sergio Escalera, Kamal Nasrollahi, Thomas B. Moeslund,
- Abstract summary: This paper investigates machine unlearning in hyperbolic contrastive learning.<n>We adapt Alignment to MERU, a model that embeds images and text in hyperbolic space to better capture semantic hierarchies.<n>Our approach introduces hyperbolic-specific components including entailment calibration and norm regularization that leverage the unique properties of hyperbolic space.
- Score: 50.9588132578029
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine unlearning methods have become increasingly important for selective concept removal in large pre-trained models. While recent work has explored unlearning in Euclidean contrastive vision-language models, the effectiveness of concept removal in hyperbolic spaces remains unexplored. This paper investigates machine unlearning in hyperbolic contrastive learning by adapting Alignment Calibration to MERU, a model that embeds images and text in hyperbolic space to better capture semantic hierarchies. Through systematic experiments and ablation studies, we demonstrate that hyperbolic geometry offers distinct advantages for concept removal, achieving near perfect forgetting with reasonable performance on retained concepts, particularly when scaling to multiple concept removal. Our approach introduces hyperbolic-specific components including entailment calibration and norm regularization that leverage the unique properties of hyperbolic space. Comparative analysis with Euclidean models reveals fundamental differences in unlearning dynamics, with hyperbolic unlearning reorganizing the semantic hierarchy while Euclidean approaches merely disconnect cross-modal associations. These findings not only advance machine unlearning techniques but also provide insights into the geometric properties that influence concept representation and removal in multimodal models. Source code available at https://github.com/alex-pv01/HAC
Related papers
- From Semantics to Hierarchy: A Hybrid Euclidean-Tangent-Hyperbolic Space Model for Temporal Knowledge Graph Reasoning [1.1372536310854844]
Temporal knowledge graph (TKG) reasoning predicts future events based on historical data.
Existing Euclidean models excel at capturing semantics but struggle with hierarchy.
We propose a novel hybrid geometric space approach that leverages the strengths of both Euclidean and hyperbolic models.
arXiv Detail & Related papers (2024-08-30T10:33:08Z) - Hyperbolic vs Euclidean Embeddings in Few-Shot Learning: Two Sides of
the Same Coin [49.12496652756007]
We show that the best few-shot results are attained for hyperbolic embeddings at a common hyperbolic radius.
In contrast to prior benchmark results, we demonstrate that better performance can be achieved by a fixed-radius encoder equipped with the Euclidean metric.
arXiv Detail & Related papers (2023-09-18T14:51:46Z) - Dynamic Hyperbolic Attention Network for Fine Hand-object Reconstruction [76.5549647815413]
We propose the first precise hand-object reconstruction method in hyperbolic space, namely Dynamic Hyperbolic Attention Network (DHANet)
Our method learns mesh features with rich geometry-image multi-modal information and models better hand-object interaction.
arXiv Detail & Related papers (2023-09-06T13:00:10Z) - Hyperbolic Representation Learning: Revisiting and Advancing [43.1661098138936]
We introduce a position-tracking mechanism to scrutinize existing prevalent hlms, revealing that the learned representations are sub-optimal and unsatisfactory.
We propose a simple yet effective method, hyperbolic informed embedding (HIE), by incorporating cost-free hierarchical information deduced from the hyperbolic distance of the node to origin.
Our method achieves a remarkable improvement of up to 21.4% compared to the competing baselines.
arXiv Detail & Related papers (2023-06-15T13:25:39Z) - HMSN: Hyperbolic Self-Supervised Learning by Clustering with Ideal
Prototypes [7.665392786787577]
We use hyperbolic representation space for self-supervised representation learning for prototype-based clustering approaches.
We extend the Masked Siamese Networks to operate on the Poincar'e ball model of hyperbolic space.
Unlike previous methods we project to the hyperbolic space at the output of the encoder network and utilise a hyperbolic projection head to ensure that the representations used for downstream tasks remain hyperbolic.
arXiv Detail & Related papers (2023-05-18T12:38:40Z) - HRCF: Enhancing Collaborative Filtering via Hyperbolic Geometric
Regularization [52.369435664689995]
We introduce a textitHyperbolic Regularization powered Collaborative Filtering (HRCF) and design a geometric-aware hyperbolic regularizer.
Specifically, the proposal boosts optimization procedure via the root alignment and origin-aware penalty.
Our proposal is able to tackle the over-smoothing problem caused by hyperbolic aggregation and also brings the models a better discriminative ability.
arXiv Detail & Related papers (2022-04-18T06:11:44Z) - Hyperbolic Vision Transformers: Combining Improvements in Metric
Learning [116.13290702262248]
We propose a new hyperbolic-based model for metric learning.
At the core of our method is a vision transformer with output embeddings mapped to hyperbolic space.
We evaluate the proposed model with six different formulations on four datasets.
arXiv Detail & Related papers (2022-03-21T09:48:23Z) - Hyperbolic Neural Networks++ [66.16106727715061]
We generalize the fundamental components of neural networks in a single hyperbolic geometry model, namely, the Poincar'e ball model.
Experiments show the superior parameter efficiency of our methods compared to conventional hyperbolic components, and stability and outperformance over their Euclidean counterparts.
arXiv Detail & Related papers (2020-06-15T08:23:20Z) - Hyperbolic Manifold Regression [33.40757136529844]
We consider the problem of performing manifold-valued regression onto an hyperbolic space as an intermediate component for a number of relevant machine learning applications.
We propose a novel perspective on two challenging tasks: 1) hierarchical classification via label embeddings and 2) taxonomy extension of hyperbolic representations.
Our experiments show that the strategy of leveraging the hyperbolic geometry is promising.
arXiv Detail & Related papers (2020-05-28T10:16:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.