Mitigating Cold-start Forecasting using Cold Causal Demand Forecasting
Model
- URL: http://arxiv.org/abs/2306.09261v1
- Date: Thu, 15 Jun 2023 16:36:34 GMT
- Title: Mitigating Cold-start Forecasting using Cold Causal Demand Forecasting
Model
- Authors: Zahra Fatemi, Minh Huynh, Elena Zheleva, Zamir Syed, Xiaojun Di
- Abstract summary: We introduce the Cold Causal Demand Forecasting (CDF-cold) framework that integrates causal inference with deep learning-based models.
Our experiments demonstrate that the CDF-cold framework outperforms state-of-the-art forecasting models in predicting future values of multivariate time series data.
- Score: 10.132124789018262
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Forecasting multivariate time series data, which involves predicting future
values of variables over time using historical data, has significant practical
applications. Although deep learning-based models have shown promise in this
field, they often fail to capture the causal relationship between dependent
variables, leading to less accurate forecasts. Additionally, these models
cannot handle the cold-start problem in time series data, where certain
variables lack historical data, posing challenges in identifying dependencies
among variables. To address these limitations, we introduce the Cold Causal
Demand Forecasting (CDF-cold) framework that integrates causal inference with
deep learning-based models to enhance the forecasting accuracy of multivariate
time series data affected by the cold-start problem. To validate the
effectiveness of the proposed approach, we collect 15 multivariate time-series
datasets containing the network traffic of different Google data centers. Our
experiments demonstrate that the CDF-cold framework outperforms
state-of-the-art forecasting models in predicting future values of multivariate
time series data.
Related papers
- Beyond Data Scarcity: A Frequency-Driven Framework for Zero-Shot Forecasting [15.431513584239047]
Time series forecasting is critical in numerous real-world applications.
Traditional forecasting techniques struggle when data is scarce or not available at all.
Recent advancements often leverage large-scale foundation models for such tasks.
arXiv Detail & Related papers (2024-11-24T07:44:39Z) - Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
Time series forecasting plays a critical role in various real-world applications, including energy consumption prediction, disease transmission monitoring, and weather forecasting.
Most existing methods rely on a centralized training paradigm, where large amounts of data are collected from distributed devices to a central cloud server.
We propose a novel framework, Fed-TREND, to address data heterogeneity by generating informative synthetic data as auxiliary knowledge carriers.
arXiv Detail & Related papers (2024-11-24T04:56:45Z) - StreamEnsemble: Predictive Queries over Spatiotemporal Streaming Data [0.8437187555622164]
We propose StreamEnembles, a novel approach to predictive queries overtemporal (ST) data distributions.
Our experimental evaluation reveals that this method markedly outperforms traditional ensemble methods and single model approaches in terms of accuracy and time.
arXiv Detail & Related papers (2024-09-30T23:50:16Z) - Learning Graph Structures and Uncertainty for Accurate and Calibrated Time-series Forecasting [65.40983982856056]
We introduce STOIC, that leverages correlations between time-series to learn underlying structure between time-series and to provide well-calibrated and accurate forecasts.
Over a wide-range of benchmark datasets STOIC provides 16% more accurate and better-calibrated forecasts.
arXiv Detail & Related papers (2024-07-02T20:14:32Z) - TimeSieve: Extracting Temporal Dynamics through Information Bottlenecks [31.10683149519954]
We propose an innovative time series forecasting model TimeSieve.
Our approach employs wavelet transforms to preprocess time series data, effectively capturing multi-scale features.
Our results validate the effectiveness of our approach in addressing the key challenges in time series forecasting.
arXiv Detail & Related papers (2024-06-07T15:58:12Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Optimal Latent Space Forecasting for Large Collections of Short Time
Series Using Temporal Matrix Factorization [0.0]
It is a common practice to evaluate multiple methods and choose one of these methods or an ensemble for producing the best forecasts.
We propose a framework for forecasting short high-dimensional time series data by combining low-rank temporal matrix factorization and optimal model selection on latent time series.
arXiv Detail & Related papers (2021-12-15T11:39:21Z) - Global Models for Time Series Forecasting: A Simulation Study [2.580765958706854]
We simulate time series from simple data generating processes (DGP), such as Auto Regressive (AR) and Seasonal AR, to complex DGPs, such as Chaotic Logistic Map, Self-Exciting Threshold Auto-Regressive, and Mackey-Glass equations.
The lengths and the number of series in the dataset are varied in different scenarios.
We perform experiments on these datasets using global forecasting models including Recurrent Neural Networks (RNN), Feed-Forward Neural Networks, Pooled Regression (PR) models, and Light Gradient Boosting Models (LGBM)
arXiv Detail & Related papers (2020-12-23T04:45:52Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.