FATE: Focal-modulated Attention Encoder for Multivariate Time-series Forecasting
- URL: http://arxiv.org/abs/2408.11336v2
- Date: Sun, 15 Jun 2025 07:50:57 GMT
- Title: FATE: Focal-modulated Attention Encoder for Multivariate Time-series Forecasting
- Authors: Tajamul Ashraf, Janibul Bashir,
- Abstract summary: Climate stands as one of the most pressing global challenges of the twenty-first century, with far-reaching consequences such as rising sea levels, melting glaciers, and increasingly extreme weather patterns.<n> Accurate forecasting is critical for monitoring these phenomena and supporting mitigation strategies.<n>Recent data-driven models for time-series forecasting, including CNNs, RNNs, and attention-based transformers, have shown promise but struggle with dependencies and limited parallelization.<n>In this work, we present Modulated Attention Focal (FATE) for reliable time-series forecasting.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Climate change stands as one of the most pressing global challenges of the twenty-first century, with far-reaching consequences such as rising sea levels, melting glaciers, and increasingly extreme weather patterns. Accurate forecasting is critical for monitoring these phenomena and supporting mitigation strategies. While recent data-driven models for time-series forecasting, including CNNs, RNNs, and attention-based transformers, have shown promise, they often struggle with sequential dependencies and limited parallelization, especially in long-horizon, multivariate meteorological datasets. In this work, we present Focal Modulated Attention Encoder (FATE), a novel transformer architecture designed for reliable multivariate time-series forecasting. Unlike conventional models, FATE introduces a tensorized focal modulation mechanism that explicitly captures spatiotemporal correlations in time-series data. We further propose two modulation scores that offer interpretability by highlighting critical environmental features influencing predictions. We benchmark FATE across seven diverse real-world datasets including ETTh1, ETTm2, Traffic, Weather5k, USA-Canada, Europe, and LargeST datasets, and show that it consistently outperforms all state-of-the-art methods, including temperature datasets. Our ablation studies also demonstrate that FATE generalizes well to broader multivariate time-series forecasting tasks. For reproducible research, code is released at https://github.com/Tajamul21/FATE.
Related papers
- ClimateLLM: Efficient Weather Forecasting via Frequency-Aware Large Language Models [13.740208247043258]
We propose ClimateLLM, a foundation model for weather forecasting.<n>It captures temporal dependencies via a cross-temporal and cross-spatial collaborative framework.<n>It integrates frequency decomposition with Large Language Models to strengthen spatial and temporal modeling.
arXiv Detail & Related papers (2025-02-16T09:57:50Z) - Accurate Prediction of Temperature Indicators in Eastern China Using a Multi-Scale CNN-LSTM-Attention model [0.0]
We propose a weather prediction model based on a multi-scale convolutional CNN-LSTM-Attention architecture.
The model integrates Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM) networks, and attention mechanisms.
Experimental results show that the model performs excellently in predicting temperature trends with high accuracy.
arXiv Detail & Related papers (2024-12-11T00:42:31Z) - Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
Time series forecasting plays a critical role in various real-world applications, including energy consumption prediction, disease transmission monitoring, and weather forecasting.
Most existing methods rely on a centralized training paradigm, where large amounts of data are collected from distributed devices to a central cloud server.
We propose a novel framework, Fed-TREND, to address data heterogeneity by generating informative synthetic data as auxiliary knowledge carriers.
arXiv Detail & Related papers (2024-11-24T04:56:45Z) - Deep Learning for Weather Forecasting: A CNN-LSTM Hybrid Model for Predicting Historical Temperature Data [7.559331742876793]
This study introduces a hybrid model combining Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks to predict historical temperature data.
CNNs are utilized for spatial feature extraction, while LSTMs handle temporal dependencies, resulting in significantly improved prediction accuracy and stability.
arXiv Detail & Related papers (2024-10-19T03:38:53Z) - Weather Prediction Using CNN-LSTM for Time Series Analysis: A Case Study on Delhi Temperature Data [0.0]
This study explores a hybrid CNN-LSTM model to enhance temperature forecasting accuracy for the Delhi region.
We employed both direct and indirect methods, including comprehensive data preprocessing and exploratory analysis, to construct and train our model.
Experimental results indicate that the CNN-LSTM model significantly outperforms traditional forecasting methods in terms of both accuracy and stability.
arXiv Detail & Related papers (2024-09-14T11:06:07Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
We design a conceptual fine-grained causal model named TBN Granger Causality.
Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner.
We test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.
arXiv Detail & Related papers (2024-08-08T06:47:21Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
We propose a Multi-Grained Correlations-based Prediction Network.
It simultaneously considers correlations at three levels to enhance prediction performance.
It employs adversarial training with an attention mechanism-based predictor and conditional discriminator to optimize prediction results at coarse-grained level.
arXiv Detail & Related papers (2024-05-30T03:32:44Z) - FAITH: Frequency-domain Attention In Two Horizons for Time Series Forecasting [13.253624747448935]
Time Series Forecasting plays a crucial role in various fields such as industrial equipment maintenance, meteorology, energy consumption, traffic flow and financial investment.
Current deep learning-based predictive models often exhibit a significant deviation between their forecasting outcomes and the ground truth.
We propose a novel model Frequency-domain Attention In Two Horizons, which decomposes time series into trend and seasonal components.
arXiv Detail & Related papers (2024-05-22T02:37:02Z) - Adapting to Length Shift: FlexiLength Network for Trajectory Prediction [53.637837706712794]
Trajectory prediction plays an important role in various applications, including autonomous driving, robotics, and scene understanding.
Existing approaches mainly focus on developing compact neural networks to increase prediction precision on public datasets, typically employing a standardized input duration.
We introduce a general and effective framework, the FlexiLength Network (FLN), to enhance the robustness of existing trajectory prediction against varying observation periods.
arXiv Detail & Related papers (2024-03-31T17:18:57Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Mitigating Cold-start Forecasting using Cold Causal Demand Forecasting
Model [10.132124789018262]
We introduce the Cold Causal Demand Forecasting (CDF-cold) framework that integrates causal inference with deep learning-based models.
Our experiments demonstrate that the CDF-cold framework outperforms state-of-the-art forecasting models in predicting future values of multivariate time series data.
arXiv Detail & Related papers (2023-06-15T16:36:34Z) - SERT: A Transfomer Based Model for Spatio-Temporal Sensor Data with
Missing Values for Environmental Monitoring [0.0]
Data collected from sensors often contain missing values due to faulty equipment or maintenance issues.
We propose two models that are capable of performing multivariate-temporal forecasting while handling missing data without need for imputation.
arXiv Detail & Related papers (2023-06-05T17:06:23Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - Deep Autoregressive Models with Spectral Attention [74.08846528440024]
We propose a forecasting architecture that combines deep autoregressive models with a Spectral Attention (SA) module.
By characterizing in the spectral domain the embedding of the time series as occurrences of a random process, our method can identify global trends and seasonality patterns.
Two spectral attention models, global and local to the time series, integrate this information within the forecast and perform spectral filtering to remove time series's noise.
arXiv Detail & Related papers (2021-07-13T11:08:47Z) - TENT: Tensorized Encoder Transformer for Temperature Forecasting [3.498371632913735]
We introduce a new model based on the Transformer architecture for weather forecasting.
We show that compared to the original transformer and 3D convolutional neural networks, the proposed TENT model can better model the underlying complex pattern of weather data.
Experiments on two real-life weather datasets are performed.
arXiv Detail & Related papers (2021-06-28T14:17:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.