論文の概要: Diffusion Models for Zero-Shot Open-Vocabulary Segmentation
- arxiv url: http://arxiv.org/abs/2306.09316v1
- Date: Thu, 15 Jun 2023 17:51:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-16 13:15:11.759411
- Title: Diffusion Models for Zero-Shot Open-Vocabulary Segmentation
- Title(参考訳): ゼロショット開語彙セグメンテーションのための拡散モデル
- Authors: Laurynas Karazija, Iro Laina, Andrea Vedaldi, Christian Rupprecht
- Abstract要約: 本稿では,ゼロショット開語彙セグメンテーションのための新しい手法を提案する。
我々は,大規模テキスト・画像拡散モデルの生成特性を利用して,支援画像の集合をサンプリングする。
提案手法は,既存の事前学習型自己教師型特徴抽出器を自然言語で抽出するのに有効であることを示す。
- 参考スコア(独自算出の注目度): 97.25882784890456
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The variety of objects in the real world is nearly unlimited and is thus
impossible to capture using models trained on a fixed set of categories. As a
result, in recent years, open-vocabulary methods have attracted the interest of
the community. This paper proposes a new method for zero-shot open-vocabulary
segmentation. Prior work largely relies on contrastive training using
image-text pairs, leveraging grouping mechanisms to learn image features that
are both aligned with language and well-localised. This however can introduce
ambiguity as the visual appearance of images with similar captions often
varies. Instead, we leverage the generative properties of large-scale
text-to-image diffusion models to sample a set of support images for a given
textual category. This provides a distribution of appearances for a given text
circumventing the ambiguity problem. We further propose a mechanism that
considers the contextual background of the sampled images to better localise
objects and segment the background directly. We show that our method can be
used to ground several existing pre-trained self-supervised feature extractors
in natural language and provide explainable predictions by mapping back to
regions in the support set. Our proposal is training-free, relying on
pre-trained components only, yet, shows strong performance on a range of
open-vocabulary segmentation benchmarks, obtaining a lead of more than 10% on
the Pascal VOC benchmark.
- Abstract(参考訳): 現実世界のオブジェクトの多様性はほぼ無限であり、固定されたカテゴリでトレーニングされたモデルを使ってキャプチャすることは不可能である。
その結果,近年,オープン語彙の手法がコミュニティの関心を集めている。
本稿では,ゼロショットオープンボキャブラリーセグメンテーションの新しい手法を提案する。
以前の作業は、画像とテキストのペアを使った対照的なトレーニングに大きく依存しており、グループ化機構を活用して、言語に整合した画像の特徴を学習する。
しかし、類似のキャプションを持つ画像の視覚的外観が異なるため、曖昧さが伴う。
代わりに、大規模テキスト画像拡散モデルの生成特性を利用して、与えられたテキストカテゴリに対するサポート画像の集合をサンプリングする。
これは、曖昧性問題を回避する所定のテキストの外観の分布を提供する。
さらに,サンプル画像のコンテキスト背景を考慮し,オブジェクトのローカライズを向上し,背景を直接分割する機構を提案する。
提案手法は,既存の学習済みの自己教師付き特徴抽出器を自然言語に接地し,サポートセット内の領域にマッピングすることで説明可能な予測を提供する。
提案手法はトレーニング不要で,事前学習されたコンポーネントのみに依存するが,オープン語彙セグメンテーションベンチマークでは高い性能を示し,Pascal VOCベンチマークでは10%以上のリードが得られた。
関連論文リスト
- Unleashing the Potential of the Diffusion Model in Few-shot Semantic Segmentation [56.87049651707208]
セマンティックはインコンテクストタスクへと発展し、一般化的セグメンテーションモデルを評価する上で重要な要素となった。
我々の最初の焦点は、クエリイメージとサポートイメージの相互作用を容易にする方法を理解することであり、その結果、自己注意フレームワーク内のKV融合法が提案される。
そこで我々はDiffewSというシンプルで効果的なフレームワークを構築し,従来の潜在拡散モデルの生成フレームワークを最大限に保持する。
論文 参考訳(メタデータ) (2024-10-03T10:33:49Z) - USE: Universal Segment Embeddings for Open-Vocabulary Image Segmentation [33.11010205890195]
オープン語彙のイメージセグメンテーションにおける大きな課題は、これらのセグメンテーションをテキスト定義カテゴリに正確に分類することにある。
この課題に対処するために、Universal Segment Embedding(USE)フレームワークを紹介します。
本フレームワークは,1)大量のセグメントテキストペアを様々な粒度で効率的にキュレートするように設計されたデータパイプライン,2)テキスト定義のカテゴリに精度の高いセグメント分類を可能にする普遍的なセグメント埋め込みモデルからなる。
論文 参考訳(メタデータ) (2024-06-07T21:41:18Z) - Training-Free Open-Vocabulary Segmentation with Offline Diffusion-Augmented Prototype Generation [44.008094698200026]
FreeDAはオープン語彙セマンティックセグメンテーションのためのトレーニング不要な拡散拡張手法である。
FreeDAは5つのデータセットで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-04-09T18:00:25Z) - FreeSeg-Diff: Training-Free Open-Vocabulary Segmentation with Diffusion Models [56.71672127740099]
我々は,閉鎖語彙データセットのトレーニングモデルによって伝統的に解決されるイメージセグメンテーションの課題に焦点をあてる。
我々は、ゼロショットのオープン語彙セグメンテーションのために、異なる、比較的小さなオープンソース基盤モデルを活用している。
当社のアプローチ(別名FreeSeg-Diff)は、トレーニングに依存しないもので、Pascal VOCとCOCOデータセットの両方で多くのトレーニングベースのアプローチより優れています。
論文 参考訳(メタデータ) (2024-03-29T10:38:25Z) - Diffusion Model is Secretly a Training-free Open Vocabulary Semantic
Segmenter [47.29967666846132]
生成テキストから画像への拡散モデルは非常に効率的なオープン語彙セマンティックセマンティックセマンティクスである。
我々はDiffSegmenterという新しいトレーニング不要のアプローチを導入し、入力テキストに意味的に忠実な現実的なオブジェクトを生成する。
3つのベンチマークデータセットの大規模な実験により、提案したDiffSegmenterは、オープン語彙セマンティックセマンティックセグメンテーションの印象的な結果が得られることが示された。
論文 参考訳(メタデータ) (2023-09-06T06:31:08Z) - Exploring Open-Vocabulary Semantic Segmentation without Human Labels [76.15862573035565]
我々は、既存の事前学習された視覚言語モデル(VL)を利用して意味的セグメンテーションモデルを訓練するZeroSegを提案する。
ZeroSegは、VLモデルで学んだ視覚概念をセグメントトークンの集合に蒸留することでこれを克服し、それぞれが対象画像の局所化領域を要約する。
提案手法は,他のゼロショットセグメンテーション法と比較して,同じトレーニングデータを用いた場合と比較して,最先端性能を実現する。
論文 参考訳(メタデータ) (2023-06-01T08:47:06Z) - Open-vocabulary Panoptic Segmentation with Embedding Modulation [71.15502078615587]
オープン語彙のイメージセグメンテーションは、現実世界における重要な応用のために注目を集めている。
従来のクローズド・ボキャブラリ・セグメンテーション法は、新しいオブジェクトを特徴づけることができないが、最近のいくつかのオープン・ボキャブラリ試みは、満足のいく結果を得る。
オープン語彙パノプトンのための全能的でデータ効率のよいフレームワークであるOPSNetを提案する。
論文 参考訳(メタデータ) (2023-03-20T17:58:48Z) - SCNet: Enhancing Few-Shot Semantic Segmentation by Self-Contrastive
Background Prototypes [56.387647750094466]
Few-shot セマンティックセマンティックセマンティクスは,クエリイメージ内の新規クラスオブジェクトを,アノテーション付きの例で分割することを目的としている。
先進的なソリューションのほとんどは、各ピクセルを学習した前景のプロトタイプに合わせることでセグメンテーションを行うメトリクス学習フレームワークを利用している。
このフレームワークは、前景プロトタイプのみとのサンプルペアの不完全な構築のために偏った分類に苦しんでいます。
論文 参考訳(メタデータ) (2021-04-19T11:21:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。