Prevention of cyberattacks in WSN and packet drop by CI framework and
information processing protocol using AI and Big Data
- URL: http://arxiv.org/abs/2306.09448v1
- Date: Thu, 15 Jun 2023 19:00:39 GMT
- Title: Prevention of cyberattacks in WSN and packet drop by CI framework and
information processing protocol using AI and Big Data
- Authors: Shreyanth S
- Abstract summary: This study integrates a cognitive intelligence (CI) framework, an information processing protocol, and sophisticated artificial intelligence (AI) and big data analytics approaches.
The framework is capable of detecting and preventing several forms of assaults, including as denial-of-service (DoS) attacks, node compromise, and data tampering.
It is highly resilient to packet drop occurrences, which improves the WSN's overall reliability and performance.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the reliance on wireless sensor networks (WSNs) rises in numerous sectors,
cyberattack prevention and data transmission integrity become essential
problems. This study provides a complete framework to handle these difficulties
by integrating a cognitive intelligence (CI) framework, an information
processing protocol, and sophisticated artificial intelligence (AI) and big
data analytics approaches. The CI architecture is intended to improve WSN
security by dynamically reacting to an evolving threat scenario. It employs
artificial intelligence algorithms to continuously monitor and analyze network
behavior, identifying and mitigating any intrusions in real time. Anomaly
detection algorithms are also included in the framework to identify packet drop
instances caused by attacks or network congestion. To support the CI
architecture, an information processing protocol focusing on efficient and
secure data transfer within the WSN is introduced. To protect data integrity
and prevent unwanted access, this protocol includes encryption and
authentication techniques. Furthermore, it enhances the routing process with
the use of AI and big data approaches, providing reliable and timely packet
delivery. Extensive simulations and tests are carried out to assess the
efficiency of the suggested framework. The findings show that it is capable of
detecting and preventing several forms of assaults, including as
denial-of-service (DoS) attacks, node compromise, and data tampering.
Furthermore, the framework is highly resilient to packet drop occurrences,
which improves the WSN's overall reliability and performance
Related papers
- Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
We propose Authenticated Cyclic Redundancy Integrity Check (ACRIC)
ACRIC preserves backward compatibility without requiring additional hardware and is protocol agnostic.
We show that ACRIC offers robust security with minimal transmission overhead ( 1 ms)
arXiv Detail & Related papers (2024-11-21T18:26:05Z) - Enhanced Convolution Neural Network with Optimized Pooling and Hyperparameter Tuning for Network Intrusion Detection [0.0]
We propose an Enhanced Convolutional Neural Network (EnCNN) for Network Intrusion Detection Systems (NIDS)
We compare EnCNN with various machine learning algorithms, including Logistic Regression, Decision Trees, Support Vector Machines (SVM), and ensemble methods like Random Forest, AdaBoost, and Voting Ensemble.
The results show that EnCNN significantly improves detection accuracy, with a notable 10% increase over state-of-art approaches.
arXiv Detail & Related papers (2024-09-27T11:20:20Z) - Complete Security and Privacy for AI Inference in Decentralized Systems [14.526663289437584]
Large models are crucial for tasks like diagnosing diseases but tend to be delicate and not very scalable.
Nesa solves these challenges with a comprehensive framework using multiple techniques to protect data and model outputs.
Nesa's state-of-the-art proofs and principles demonstrate the framework's effectiveness.
arXiv Detail & Related papers (2024-07-28T05:09:17Z) - KiNETGAN: Enabling Distributed Network Intrusion Detection through Knowledge-Infused Synthetic Data Generation [0.0]
We propose a knowledge-infused Generative Adversarial Network for generating synthetic network activity data (KiNETGAN)
Our approach enhances the resilience of distributed intrusion detection while addressing privacy concerns.
arXiv Detail & Related papers (2024-05-26T08:02:02Z) - Generative AI for Secure and Privacy-Preserving Mobile Crowdsensing [74.58071278710896]
generative AI has attracted much attention from both academic and industrial fields.
Secure and privacy-preserving mobile crowdsensing (SPPMCS) has been widely applied in data collection/ acquirement.
arXiv Detail & Related papers (2024-05-17T04:00:58Z) - SISSA: Real-time Monitoring of Hardware Functional Safety and
Cybersecurity with In-vehicle SOME/IP Ethernet Traffic [49.549771439609046]
We propose SISSA, a SOME/IP communication traffic-based approach for modeling and analyzing in-vehicle functional safety and cyber security.
Specifically, SISSA models hardware failures with the Weibull distribution and addresses five potential attacks on SOME/IP communication.
Extensive experimental results show the effectiveness and efficiency of SISSA.
arXiv Detail & Related papers (2024-02-21T03:31:40Z) - X-CBA: Explainability Aided CatBoosted Anomal-E for Intrusion Detection System [2.556190321164248]
Using machine learning (ML) and deep learning (DL) models in Intrusion Detection Systems has led to a trust deficit due to their non-transparent decision-making.
This paper introduces a novel Explainable IDS approach, called X-CBA, that leverages the structural advantages of Graph Neural Networks (GNNs) to effectively process network traffic data.
Our approach achieves high accuracy with 99.47% in threat detection and provides clear, actionable explanations of its analytical outcomes.
arXiv Detail & Related papers (2024-02-01T18:29:16Z) - A high throughput Intrusion Detection System (IDS) to enhance the security of data transmission among research centers [39.65647745132031]
This paper presents a packet sniffer that was designed using a commercial FPGA development board.
The system can support a data throughput of 10 Gbit/s with preliminary results showing that the speed of data transmission can be reliably extended to 100 Gbit/s.
It is particularly suited for the security of universities and research centers, where point-to-point network connections are dominant.
arXiv Detail & Related papers (2023-11-10T14:30:00Z) - Task-Oriented Integrated Sensing, Computation and Communication for
Wireless Edge AI [46.61358701676358]
Edge artificial intelligence (AI) has been proposed to provide high-performance computation of a conventional cloud down to the network edge.
Recently, convergence of wireless sensing, computation and communication (SC$2$) for specific edge AI tasks, has aroused paradigm shift.
It is paramount importance to advance fully integrated sensing, computation and communication (I SCC) to achieve ultra-reliable and low-latency edge intelligence acquisition.
arXiv Detail & Related papers (2023-06-11T06:40:51Z) - Cross-Layered Distributed Data-driven Framework For Enhanced Smart Grid
Cyber-Physical Security [3.8237485961848128]
Cross-Layer Ensemble CorrDet with Adaptive Statistics is presented.
It integrates the detection of faulty SG measurement data as well as inconsistent network inter-arrival times and transmission delays.
Results show that CECD-AS can detect multiple False Data Injections, Denial of Service (DoS) and Man In The Middle (MITM) attacks with a high F1-score.
arXiv Detail & Related papers (2021-11-10T00:00:51Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
We study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data.
We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance.
arXiv Detail & Related papers (2020-09-28T17:55:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.