CHORUS: Foundation Models for Unified Data Discovery and Exploration
- URL: http://arxiv.org/abs/2306.09610v3
- Date: Fri, 5 Apr 2024 20:26:02 GMT
- Title: CHORUS: Foundation Models for Unified Data Discovery and Exploration
- Authors: Moe Kayali, Anton Lykov, Ilias Fountalis, Nikolaos Vasiloglou, Dan Olteanu, Dan Suciu,
- Abstract summary: We show that foundation models are highly applicable to the data discovery and data exploration domain.
We show that a foundation-model-based approach outperforms the task-specific models and so the state of the art.
This suggests a future direction in which disparate data management tasks can be unified under foundation models.
- Score: 6.85448651843431
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We apply foundation models to data discovery and exploration tasks. Foundation models include large language models (LLMs) that show promising performance on a range of diverse tasks unrelated to their training. We show that these models are highly applicable to the data discovery and data exploration domain. When carefully used, they have superior capability on three representative tasks: table-class detection, column-type annotation and join-column prediction. On all three tasks, we show that a foundation-model-based approach outperforms the task-specific models and so the state of the art. Further, our approach often surpasses human-expert task performance. We investigate the fundamental characteristics of this approach including generalizability to several foundation models and the impact of non-determinism on the outputs. All in all, this suggests a future direction in which disparate data management tasks can be unified under foundation models.
Related papers
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Evaluating and Benchmarking Foundation Models for Earth Observation and Geospatial AI [26.986832126456413]
We focus on the specific Computer Vision application of Foundation Models for Earth Observation (EO) and geospatial AI.
We show that for a limited number of labelled data, Foundation Models achieve improved performance compared to problem-specific models.
We present the results using our evaluation benchmark for EO Foundation Models and show that Foundation Models are label efficient in the downstream tasks.
arXiv Detail & Related papers (2024-06-26T12:27:06Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
We make empirical studies of state-of-the-art UniDA methods using foundation models.
We introduce textitCLIP distillation, a parameter-free method specifically designed to distill target knowledge from CLIP models.
Although simple, our method outperforms previous approaches in most benchmark tasks.
arXiv Detail & Related papers (2023-05-18T16:28:29Z) - LLM2Loss: Leveraging Language Models for Explainable Model Diagnostics [5.33024001730262]
We propose an approach that can provide semantic insights into a model's patterns of failures and biases.
We show that an ensemble of such lightweight models can be used to generate insights on the performance of the black-box model.
arXiv Detail & Related papers (2023-05-04T23:54:37Z) - A Billion-scale Foundation Model for Remote Sensing Images [5.065947993017157]
Three key factors in pretraining foundation models are the pretraining method, the size of the pretraining dataset, and the number of model parameters.
This paper examines the effect of increasing the number of model parameters on the performance of foundation models in downstream tasks.
To the best of our knowledge, this is the first billion-scale foundation model in the remote sensing field.
arXiv Detail & Related papers (2023-04-11T13:33:45Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
Vision foundation models exhibit impressive power, benefiting from the extremely large model capacity and broad training data.
However, in practice, downstream scenarios may only support a small model due to the limited computational resources or efficiency considerations.
This brings a critical challenge for the real-world application of foundation models: one has to transfer the knowledge of a foundation model to the downstream task.
arXiv Detail & Related papers (2023-04-05T07:28:33Z) - PAMI: partition input and aggregate outputs for model interpretation [69.42924964776766]
In this study, a simple yet effective visualization framework called PAMI is proposed based on the observation that deep learning models often aggregate features from local regions for model predictions.
The basic idea is to mask majority of the input and use the corresponding model output as the relative contribution of the preserved input part to the original model prediction.
Extensive experiments on multiple tasks confirm the proposed method performs better than existing visualization approaches in more precisely finding class-specific input regions.
arXiv Detail & Related papers (2023-02-07T08:48:34Z) - Making Table Understanding Work in Practice [9.352813774921655]
We discuss three challenges of deploying table understanding models and propose a framework to address them.
We present SigmaTyper which encapsulates a hybrid model trained on GitTables and integrates a lightweight human-in-the-loop approach to customize the model.
arXiv Detail & Related papers (2021-09-11T03:38:24Z) - When Can Models Learn From Explanations? A Formal Framework for
Understanding the Roles of Explanation Data [84.87772675171412]
We study the circumstances under which explanations of individual data points can improve modeling performance.
We make use of three existing datasets with explanations: e-SNLI, TACRED, SemEval.
arXiv Detail & Related papers (2021-02-03T18:57:08Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.