LLM2Loss: Leveraging Language Models for Explainable Model Diagnostics
- URL: http://arxiv.org/abs/2305.03212v2
- Date: Wed, 17 May 2023 22:36:03 GMT
- Title: LLM2Loss: Leveraging Language Models for Explainable Model Diagnostics
- Authors: Shervin Ardeshir
- Abstract summary: We propose an approach that can provide semantic insights into a model's patterns of failures and biases.
We show that an ensemble of such lightweight models can be used to generate insights on the performance of the black-box model.
- Score: 5.33024001730262
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Trained on a vast amount of data, Large Language models (LLMs) have achieved
unprecedented success and generalization in modeling fairly complex textual
inputs in the abstract space, making them powerful tools for zero-shot
learning. Such capability is extended to other modalities such as the visual
domain using cross-modal foundation models such as CLIP, and as a result,
semantically meaningful representation are extractable from visual inputs.
In this work, we leverage this capability and propose an approach that can
provide semantic insights into a model's patterns of failures and biases. Given
a black box model, its training data, and task definition, we first calculate
its task-related loss for each data point. We then extract a semantically
meaningful representation for each training data point (such as CLIP embeddings
from its visual encoder) and train a lightweight diagnosis model which maps
this semantically meaningful representation of a data point to its task loss.
We show that an ensemble of such lightweight models can be used to generate
insights on the performance of the black-box model, in terms of identifying its
patterns of failures and biases.
Related papers
- Enabling Small Models for Zero-Shot Classification through Model Label Learning [50.68074833512999]
We introduce a novel paradigm, Model Label Learning (MLL), which bridges the gap between models and their functionalities.
Experiments on seven real-world datasets validate the effectiveness and efficiency of MLL.
arXiv Detail & Related papers (2024-08-21T09:08:26Z) - Multi-modal Auto-regressive Modeling via Visual Words [96.25078866446053]
We propose the concept of visual tokens, which maps the visual features to probability distributions over Large Multi-modal Models' vocabulary.
We further explore the distribution of visual features in the semantic space within LMM and the possibility of using text embeddings to represent visual information.
arXiv Detail & Related papers (2024-03-12T14:58:52Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
We develop an efficient, autoregression-based vision model on a limited dataset.
We demonstrate how this model achieves proficiency in a spectrum of visual tasks spanning both high-level and low-level semantic understanding.
Our empirical evaluations underscore the model's agility in adapting to various tasks, heralding a significant reduction in the parameter footprint.
arXiv Detail & Related papers (2024-02-07T13:41:53Z) - AttributionScanner: A Visual Analytics System for Model Validation with Metadata-Free Slice Finding [29.07617945233152]
Data slice finding is an emerging technique for validating machine learning (ML) models by identifying and analyzing subgroups in a dataset that exhibit poor performance.
This approach faces significant challenges, including the laborious and costly requirement for additional metadata.
We introduce AttributionScanner, an innovative human-in-the-loop Visual Analytics (VA) system, designed for metadata-free data slice finding.
Our system identifies interpretable data slices that involve common model behaviors and visualizes these patterns through an Attribution Mosaic design.
arXiv Detail & Related papers (2024-01-12T09:17:32Z) - Has Your Pretrained Model Improved? A Multi-head Posterior Based
Approach [25.927323251675386]
We leverage the meta-features associated with each entity as a source of worldly knowledge and employ entity representations from the models.
We propose using the consistency between these representations and the meta-features as a metric for evaluating pre-trained models.
Our method's effectiveness is demonstrated across various domains, including models with relational datasets, large language models and image models.
arXiv Detail & Related papers (2024-01-02T17:08:26Z) - Sequential Modeling Enables Scalable Learning for Large Vision Models [120.91839619284431]
We introduce a novel sequential modeling approach which enables learning a Large Vision Model (LVM) without making use of any linguistic data.
We define a common format, "visual sentences", in which we can represent raw images and videos as well as annotated data sources.
arXiv Detail & Related papers (2023-12-01T18:59:57Z) - Adapting Large Language Models for Content Moderation: Pitfalls in Data
Engineering and Supervised Fine-tuning [79.53130089003986]
Large Language Models (LLMs) have become a feasible solution for handling tasks in various domains.
In this paper, we introduce how to fine-tune a LLM model that can be privately deployed for content moderation.
arXiv Detail & Related papers (2023-10-05T09:09:44Z) - TRAK: Attributing Model Behavior at Scale [79.56020040993947]
We present TRAK (Tracing with Randomly-trained After Kernel), a data attribution method that is both effective and computationally tractable for large-scale, differenti models.
arXiv Detail & Related papers (2023-03-24T17:56:22Z) - Self-Supervision based Task-Specific Image Collection Summarization [3.115375810642661]
We propose a novel approach to task-specific image corpus summarization using semantic information and self-supervision.
Our method uses a classification-based Wasserstein generative adversarial network (WGAN) as a feature generating network.
The model then generates a summary at inference time by using K-means clustering in the semantic embedding space.
arXiv Detail & Related papers (2020-12-19T10:58:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.