Fusing Structural and Functional Connectivities using Disentangled VAE
for Detecting MCI
- URL: http://arxiv.org/abs/2306.09629v2
- Date: Mon, 21 Aug 2023 12:15:42 GMT
- Title: Fusing Structural and Functional Connectivities using Disentangled VAE
for Detecting MCI
- Authors: Qiankun Zuo, Yanfei Zhu, Libin Lu, Zhi Yang, Yuhui Li, Ning Zhang
- Abstract summary: A novel hierarchical structural-functional connectivity fusing (HSCF) model is proposed to construct brain structural-functional connectivity matrices.
Results from a wide range of tests performed on the public Alzheimer's Disease Neuroimaging Initiative database show that the proposed model performs better than competing approaches.
- Score: 9.916963496386089
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain network analysis is a useful approach to studying human brain disorders
because it can distinguish patients from healthy people by detecting abnormal
connections. Due to the complementary information from multiple modal
neuroimages, multimodal fusion technology has a lot of potential for improving
prediction performance. However, effective fusion of multimodal medical images
to achieve complementarity is still a challenging problem. In this paper, a
novel hierarchical structural-functional connectivity fusing (HSCF) model is
proposed to construct brain structural-functional connectivity matrices and
predict abnormal brain connections based on functional magnetic resonance
imaging (fMRI) and diffusion tensor imaging (DTI). Specifically, the prior
knowledge is incorporated into the separators for disentangling each modality
of information by the graph convolutional networks (GCN). And a disentangled
cosine distance loss is devised to ensure the disentanglement's effectiveness.
Moreover, the hierarchical representation fusion module is designed to
effectively maximize the combination of relevant and effective features between
modalities, which makes the generated structural-functional connectivity more
robust and discriminative in the cognitive disease analysis. Results from a
wide range of tests performed on the public Alzheimer's Disease Neuroimaging
Initiative (ADNI) database show that the proposed model performs better than
competing approaches in terms of classification evaluation. In general, the
proposed HSCF model is a promising model for generating brain
structural-functional connectivities and identifying abnormal brain connections
as cognitive disease progresses.
Related papers
- Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Alzheimer's Disease Prediction via Brain Structural-Functional Deep
Fusing Network [5.945843237682432]
Cross-modal transformer generative adversarial network (CT-GAN) is proposed to fuse functional and structural information.
By analyzing the generated connectivity features, the proposed model can identify AD-related brain connections.
Evaluations on the public ADNI dataset show that the proposed CT-GAN can dramatically improve prediction performance and detect AD-related brain regions effectively.
arXiv Detail & Related papers (2023-09-28T07:06:42Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Brain Structure-Function Fusing Representation Learning using
Adversarial Decomposed-VAE for Analyzing MCI [17.757114703434027]
A novel brain structure-function fusing-representation learning (BSFL) model is proposed to learn fused representation from fMRI imaging.
The proposed model achieves better performance than other competitive methods in predicting and analyzing mild cognitive impairment (MCI)
The model could be a potential tool for reconstructing unified brain networks and predicting abnormal connections during the degenerative processes in MCI.
arXiv Detail & Related papers (2023-05-23T11:19:02Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - Hierarchical Graph Convolutional Network Built by Multiscale Atlases for
Brain Disorder Diagnosis Using Functional Connectivity [48.75665245214903]
We propose a novel framework to perform multiscale FCN analysis for brain disorder diagnosis.
We first use a set of well-defined multiscale atlases to compute multiscale FCNs.
Then, we utilize biologically meaningful brain hierarchical relationships among the regions in multiscale atlases to perform nodal pooling.
arXiv Detail & Related papers (2022-09-22T04:17:57Z) - Cross-Modal Transformer GAN: A Brain Structure-Function Deep Fusing
Framework for Alzheimer's Disease [5.608783790624866]
Cross-modal fusion of different types of neuroimaging data has shown great promise for predicting the progression of Alzheimer's Disease(AD)
In this work, a novel cross-modal transformer generative adversarial network(CT-GAN) is proposed to fuse functional information contained in resting-state functional magnetic resonance imaging (rs-fMRI) and structural information contained in Diffusion Imaging (DTI)
The proposed model can not only improve classification performance but also detect the AD-related brain connectivity effectively.
arXiv Detail & Related papers (2022-06-20T11:38:55Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - Characterization Multimodal Connectivity of Brain Network by Hypergraph
GAN for Alzheimer's Disease Analysis [30.99183477161096]
multimodal neuroimaging data to characterize brain network is currently an advanced technique for Alzheimer's disease(AD) Analysis.
We propose a novel Hypergraph Generative Adversarial Networks(HGGAN) to generate multimodal connectivity of Brain Network from rs-fMRI combination with DTI.
arXiv Detail & Related papers (2021-07-21T09:02:29Z) - Context-Aware Refinement Network Incorporating Structural Connectivity
Prior for Brain Midline Delineation [50.868845400939314]
We propose a context-aware refinement network (CAR-Net) to refine and integrate the feature pyramid representation generated by the UNet.
For keeping the structural connectivity of the brain midline, we introduce a novel connectivity regular loss.
The proposed method requires fewer parameters and outperforms three state-of-the-art methods in terms of four evaluation metrics.
arXiv Detail & Related papers (2020-07-10T14:01:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.