Context-Aware Refinement Network Incorporating Structural Connectivity
Prior for Brain Midline Delineation
- URL: http://arxiv.org/abs/2007.05393v1
- Date: Fri, 10 Jul 2020 14:01:20 GMT
- Title: Context-Aware Refinement Network Incorporating Structural Connectivity
Prior for Brain Midline Delineation
- Authors: Shen Wang, Kongming Liang, Yiming Li, Yizhou Yu, Yizhou Wang
- Abstract summary: We propose a context-aware refinement network (CAR-Net) to refine and integrate the feature pyramid representation generated by the UNet.
For keeping the structural connectivity of the brain midline, we introduce a novel connectivity regular loss.
The proposed method requires fewer parameters and outperforms three state-of-the-art methods in terms of four evaluation metrics.
- Score: 50.868845400939314
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain midline delineation can facilitate the clinical evaluation of brain
midline shift, which plays an important role in the diagnosis and prognosis of
various brain pathology. Nevertheless, there are still great challenges with
brain midline delineation, such as the largely deformed midline caused by the
mass effect and the possible morphological failure that the predicted midline
is not a connected curve. To address these challenges, we propose a
context-aware refinement network (CAR-Net) to refine and integrate the feature
pyramid representation generated by the UNet. Consequently, the proposed
CAR-Net explores more discriminative contextual features and a larger receptive
field, which is of great importance to predict largely deformed midline. For
keeping the structural connectivity of the brain midline, we introduce a novel
connectivity regular loss (CRL) to punish the disconnectivity between adjacent
coordinates. Moreover, we address the ignored prerequisite of previous
regression-based methods that the brain CT image must be in the standard pose.
A simple pose rectification network is presented to align the source input
image to the standard pose image. Extensive experimental results on the CQ
dataset and one inhouse dataset show that the proposed method requires fewer
parameters and outperforms three state-of-the-art methods in terms of four
evaluation metrics. Code is available at
https://github.com/ShawnBIT/Brain-Midline-Detection.
Related papers
- Adaptive Critical Subgraph Mining for Cognitive Impairment Conversion Prediction with T1-MRI-based Brain Network [4.835051121929712]
Prediction the conversion to early-stage dementia is critical for mitigating its progression.
Traditional T1-weighted magnetic resonance imaging (T1-MRI) research focus on identifying brain atrophy regions.
Brain-SubGNN is a novel graph representation network to mine and enhance critical subgraphs based on T1-MRI.
arXiv Detail & Related papers (2024-03-20T06:46:01Z) - Self-supervised Semantic Segmentation: Consistency over Transformation [3.485615723221064]
We propose a novel self-supervised algorithm, textbfS$3$-Net, which integrates a robust framework based on the proposed Inception Large Kernel Attention (I-LKA) modules.
We leverage deformable convolution as an integral component to effectively capture and delineate lesion deformations for superior object boundary definition.
Our experimental results on skin lesion and lung organ segmentation tasks show the superior performance of our method compared to the SOTA approaches.
arXiv Detail & Related papers (2023-08-31T21:28:46Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - DFENet: A Novel Dimension Fusion Edge Guided Network for Brain MRI
Segmentation [0.0]
We propose a novel Dimension Fusion Edge-guided network (DFENet) that can meet both of these requirements by fusing the features of 2D and 3D CNNs.
The proposed model is robust, accurate, superior to the existing methods, and can be relied upon for biomedical applications.
arXiv Detail & Related papers (2021-05-17T15:43:59Z) - Deep Graph Normalizer: A Geometric Deep Learning Approach for Estimating
Connectional Brain Templates [0.0]
A connectional brain template (CBT) is a normalized graph-based representation of a population of brain networks.
Deep Graph Normalizer (DGN) is the first geometric deep learning architecture for normalizing a population of MVBNs.
DGN learns how to fuse multi-view brain networks while capturing non-linear patterns across subjects.
arXiv Detail & Related papers (2020-12-28T08:01:49Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Collaborative Boundary-aware Context Encoding Networks for Error Map
Prediction [65.44752447868626]
We propose collaborative boundaryaware context encoding networks called AEP-Net for error prediction task.
Specifically, we propose a collaborative feature transformation branch for better feature fusion between images and masks, and precise localization of error regions.
The AEP-Net achieves an average DSC of 0.8358, 0.8164 for error prediction task, and shows a high Pearson correlation coefficient of 0.9873.
arXiv Detail & Related papers (2020-06-25T12:42:01Z) - Segmentation-based Method combined with Dynamic Programming for Brain
Midline Delineation [42.91127174025364]
The midline related pathological image features are crucial for evaluating the severity of brain compression caused by stroke or TBI.
Most of the previous methods model the midline by localizing the anatomical points, which are hard to detect or even missing in severe cases.
In this paper, we formulate the brain midline delineation as a segmentation task and propose a three-stage framework.
arXiv Detail & Related papers (2020-02-27T05:12:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.