CLIP2Protect: Protecting Facial Privacy using Text-Guided Makeup via
Adversarial Latent Search
- URL: http://arxiv.org/abs/2306.10008v2
- Date: Tue, 20 Jun 2023 17:33:58 GMT
- Title: CLIP2Protect: Protecting Facial Privacy using Text-Guided Makeup via
Adversarial Latent Search
- Authors: Fahad Shamshad, Muzammal Naseer, Karthik Nandakumar
- Abstract summary: Deep learning based face recognition systems can enable unauthorized tracking of users in the digital world.
Existing methods for enhancing privacy fail to generate naturalistic images that can protect facial privacy without compromising user experience.
We propose a novel two-step approach for facial privacy protection that relies on finding adversarial latent codes in the low-dimensional manifold of a pretrained generative model.
- Score: 10.16904417057085
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The success of deep learning based face recognition systems has given rise to
serious privacy concerns due to their ability to enable unauthorized tracking
of users in the digital world. Existing methods for enhancing privacy fail to
generate naturalistic images that can protect facial privacy without
compromising user experience. We propose a novel two-step approach for facial
privacy protection that relies on finding adversarial latent codes in the
low-dimensional manifold of a pretrained generative model. The first step
inverts the given face image into the latent space and finetunes the generative
model to achieve an accurate reconstruction of the given image from its latent
code. This step produces a good initialization, aiding the generation of
high-quality faces that resemble the given identity. Subsequently, user-defined
makeup text prompts and identity-preserving regularization are used to guide
the search for adversarial codes in the latent space. Extensive experiments
demonstrate that faces generated by our approach have stronger black-box
transferability with an absolute gain of 12.06% over the state-of-the-art
facial privacy protection approach under the face verification task. Finally,
we demonstrate the effectiveness of the proposed approach for commercial face
recognition systems. Our code is available at
https://github.com/fahadshamshad/Clip2Protect.
Related papers
- Transferable Adversarial Facial Images for Privacy Protection [15.211743719312613]
We present a novel face privacy protection scheme with improved transferability while maintain high visual quality.
We first exploit global adversarial latent search to traverse the latent space of the generative model.
We then introduce a key landmark regularization module to preserve the visual identity information.
arXiv Detail & Related papers (2024-07-18T02:16:11Z) - Privacy-preserving Optics for Enhancing Protection in Face De-identification [60.110274007388135]
We propose a hardware-level face de-identification method to solve this vulnerability.
We also propose an anonymization framework that generates a new face using the privacy-preserving image, face heatmap, and a reference face image from a public dataset as input.
arXiv Detail & Related papers (2024-03-31T19:28:04Z) - Privacy-Preserving Face Recognition Using Trainable Feature Subtraction [40.47645421424354]
Face recognition has led to increasing privacy concerns.
This paper explores face image protection against viewing and recovery attacks.
We distill our methodologies into a novel privacy-preserving face recognition method, MinusFace.
arXiv Detail & Related papers (2024-03-19T05:27:52Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
In this paper, we propose a novel face privacy protection method based on diffusion models, dubbed Diff-Privacy.
Specifically, we train our proposed multi-scale image inversion module (MSI) to obtain a set of SDM format conditional embeddings of the original image.
Based on the conditional embeddings, we design corresponding embedding scheduling strategies and construct different energy functions during the denoising process to achieve anonymization and visual identity information hiding.
arXiv Detail & Related papers (2023-09-11T09:26:07Z) - PRO-Face S: Privacy-preserving Reversible Obfuscation of Face Images via
Secure Flow [69.78820726573935]
We name it PRO-Face S, short for Privacy-preserving Reversible Obfuscation of Face images via Secure flow-based model.
In the framework, an Invertible Neural Network (INN) is utilized to process the input image along with its pre-obfuscated form, and generate the privacy protected image that visually approximates to the pre-obfuscated one.
arXiv Detail & Related papers (2023-07-18T10:55:54Z) - Privacy-preserving Adversarial Facial Features [31.885215405010687]
We propose an adversarial features-based face privacy protection approach to generate privacy-preserving adversarial features.
We show that AdvFace outperforms the state-of-the-art face privacy-preserving methods in defending against reconstruction attacks.
arXiv Detail & Related papers (2023-05-08T08:52:08Z) - Attribute-preserving Face Dataset Anonymization via Latent Code
Optimization [64.4569739006591]
We present a task-agnostic anonymization procedure that directly optimize the images' latent representation in the latent space of a pre-trained GAN.
We demonstrate through a series of experiments that our method is capable of anonymizing the identity of the images whilst -- crucially -- better-preserving the facial attributes.
arXiv Detail & Related papers (2023-03-20T17:34:05Z) - OPOM: Customized Invisible Cloak towards Face Privacy Protection [58.07786010689529]
We investigate the face privacy protection from a technology standpoint based on a new type of customized cloak.
We propose a new method, named one person one mask (OPOM), to generate person-specific (class-wise) universal masks.
The effectiveness of the proposed method is evaluated on both common and celebrity datasets.
arXiv Detail & Related papers (2022-05-24T11:29:37Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
We propose a targeted identity-protection iterative method (TIP-IM) to generate adversarial identity masks.
TIP-IM provides 95%+ protection success rate against various state-of-the-art face recognition models.
arXiv Detail & Related papers (2020-03-15T12:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.