PRO-Face S: Privacy-preserving Reversible Obfuscation of Face Images via
Secure Flow
- URL: http://arxiv.org/abs/2307.09146v1
- Date: Tue, 18 Jul 2023 10:55:54 GMT
- Title: PRO-Face S: Privacy-preserving Reversible Obfuscation of Face Images via
Secure Flow
- Authors: Lin Yuan, Kai Liang, Xiao Pu, Yan Zhang, Jiaxu Leng, Tao Wu, Nannan
Wang, Xinbo Gao
- Abstract summary: We name it PRO-Face S, short for Privacy-preserving Reversible Obfuscation of Face images via Secure flow-based model.
In the framework, an Invertible Neural Network (INN) is utilized to process the input image along with its pre-obfuscated form, and generate the privacy protected image that visually approximates to the pre-obfuscated one.
- Score: 69.78820726573935
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a novel paradigm for facial privacy protection that
unifies multiple characteristics including anonymity, diversity, reversibility
and security within a single lightweight framework. We name it PRO-Face S,
short for Privacy-preserving Reversible Obfuscation of Face images via Secure
flow-based model. In the framework, an Invertible Neural Network (INN) is
utilized to process the input image along with its pre-obfuscated form, and
generate the privacy protected image that visually approximates to the
pre-obfuscated one, thus ensuring privacy. The pre-obfuscation applied can be
in diversified form with different strengths and styles specified by users.
Along protection, a secret key is injected into the network such that the
original image can only be recovered from the protection image via the same
model given the correct key provided. Two modes of image recovery are devised
to deal with malicious recovery attempts in different scenarios. Finally,
extensive experiments conducted on three public image datasets demonstrate the
superiority of the proposed framework over multiple state-of-the-art
approaches.
Related papers
- ID-Guard: A Universal Framework for Combating Facial Manipulation via Breaking Identification [60.73617868629575]
misuse of deep learning-based facial manipulation poses a potential threat to civil rights.
To prevent this fraud at its source, proactive defense technology was proposed to disrupt the manipulation process.
We propose a novel universal framework for combating facial manipulation, called ID-Guard.
arXiv Detail & Related papers (2024-09-20T09:30:08Z) - PixelFade: Privacy-preserving Person Re-identification with Noise-guided Progressive Replacement [41.05432008027312]
Online person re-identification services privacy breaches from potential data leakage recovery attacks.
Previous privacy-preserving person re-identification methods are unable to resist recovery attacks and compromise accuracy.
We propose an iterative (PixelFade) method to protect pedestrian images.
arXiv Detail & Related papers (2024-08-10T12:52:54Z) - Enhancing Privacy in Face Analytics Using Fully Homomorphic Encryption [8.742970921484371]
We propose a novel technique that combines Fully Homomorphic Encryption (FHE) with an existing template protection scheme known as PolyProtect.
Our proposed approach ensures irreversibility and unlinkability, effectively preventing the leakage of soft biometric embeddings.
arXiv Detail & Related papers (2024-04-24T23:56:03Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
In this paper, we propose a novel face privacy protection method based on diffusion models, dubbed Diff-Privacy.
Specifically, we train our proposed multi-scale image inversion module (MSI) to obtain a set of SDM format conditional embeddings of the original image.
Based on the conditional embeddings, we design corresponding embedding scheduling strategies and construct different energy functions during the denoising process to achieve anonymization and visual identity information hiding.
arXiv Detail & Related papers (2023-09-11T09:26:07Z) - LDP-Feat: Image Features with Local Differential Privacy [10.306943706927006]
We propose two novel inversion attacks to show that it is possible to recover the original image features from embeddings.
We propose the first method to privatize image features via local differential privacy, which, unlike prior approaches, provides a guaranteed bound for privacy leakage.
arXiv Detail & Related papers (2023-08-22T06:28:55Z) - CLIP2Protect: Protecting Facial Privacy using Text-Guided Makeup via
Adversarial Latent Search [10.16904417057085]
Deep learning based face recognition systems can enable unauthorized tracking of users in the digital world.
Existing methods for enhancing privacy fail to generate naturalistic images that can protect facial privacy without compromising user experience.
We propose a novel two-step approach for facial privacy protection that relies on finding adversarial latent codes in the low-dimensional manifold of a pretrained generative model.
arXiv Detail & Related papers (2023-06-16T17:58:15Z) - Privacy-preserving Adversarial Facial Features [31.885215405010687]
We propose an adversarial features-based face privacy protection approach to generate privacy-preserving adversarial features.
We show that AdvFace outperforms the state-of-the-art face privacy-preserving methods in defending against reconstruction attacks.
arXiv Detail & Related papers (2023-05-08T08:52:08Z) - OPOM: Customized Invisible Cloak towards Face Privacy Protection [58.07786010689529]
We investigate the face privacy protection from a technology standpoint based on a new type of customized cloak.
We propose a new method, named one person one mask (OPOM), to generate person-specific (class-wise) universal masks.
The effectiveness of the proposed method is evaluated on both common and celebrity datasets.
arXiv Detail & Related papers (2022-05-24T11:29:37Z) - InfoScrub: Towards Attribute Privacy by Targeted Obfuscation [77.49428268918703]
We study techniques that allow individuals to limit the private information leaked in visual data.
We tackle this problem in a novel image obfuscation framework.
We find our approach generates obfuscated images faithful to the original input images, and additionally increase uncertainty by 6.2$times$ (or up to 0.85 bits) over the non-obfuscated counterparts.
arXiv Detail & Related papers (2020-05-20T19:48:04Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
We propose a targeted identity-protection iterative method (TIP-IM) to generate adversarial identity masks.
TIP-IM provides 95%+ protection success rate against various state-of-the-art face recognition models.
arXiv Detail & Related papers (2020-03-15T12:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.