A Pairing Enhancement Approach for Aspect Sentiment Triplet Extraction
- URL: http://arxiv.org/abs/2306.10042v1
- Date: Sun, 11 Jun 2023 07:32:10 GMT
- Title: A Pairing Enhancement Approach for Aspect Sentiment Triplet Extraction
- Authors: Fan Yang, Mian Zhang, Gongzhen Hu and Xiabing Zhou
- Abstract summary: Aspect Sentiment Triplet Extraction aims to extract the triplet of an aspect term, an opinion term, and their corresponding sentiment polarity from the review texts.
Due to the complexity of language and the existence of multiple aspect terms and opinion terms in a single sentence, current models often confuse the connections between an aspect term and the opinion term describing it.
We propose a pairing enhancement approach for ASTE, which incorporates contrastive learning during the training stage to inject aspect-opinion pairing knowledge into the triplet extraction model.
- Score: 3.5838781091072143
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aspect Sentiment Triplet Extraction (ASTE) aims to extract the triplet of an
aspect term, an opinion term, and their corresponding sentiment polarity from
the review texts. Due to the complexity of language and the existence of
multiple aspect terms and opinion terms in a single sentence, current models
often confuse the connections between an aspect term and the opinion term
describing it. To address this issue, we propose a pairing enhancement approach
for ASTE, which incorporates contrastive learning during the training stage to
inject aspect-opinion pairing knowledge into the triplet extraction model.
Experimental results demonstrate that our approach performs well on four ASTE
datasets (i.e., 14lap, 14res, 15res and 16res) compared to several related
classical and state-of-the-art triplet extraction methods. Moreover, ablation
studies conduct an analysis and verify the advantage of contrastive learning
over other pairing enhancement approaches.
Related papers
- Multimodal Relation Extraction with Cross-Modal Retrieval and Synthesis [89.04041100520881]
This research proposes to retrieve textual and visual evidence based on the object, sentence, and whole image.
We develop a novel approach to synthesize the object-level, image-level, and sentence-level information for better reasoning between the same and different modalities.
arXiv Detail & Related papers (2023-05-25T15:26:13Z) - Instruction Tuning for Few-Shot Aspect-Based Sentiment Analysis [72.9124467710526]
generative approaches have been proposed to extract all four elements as (one or more) quadruplets from text as a single task.
We propose a unified framework for solving ABSA, and the associated sub-tasks to improve the performance in few-shot scenarios.
arXiv Detail & Related papers (2022-10-12T23:38:57Z) - Span-level Bidirectional Cross-attention Framework for Aspect Sentiment
Triplet Extraction [10.522014946035664]
Aspect Sentiment Triplet Extraction (ASTE) is a new fine-grained sentiment analysis task that aims to extract triplets of aspect terms, sentiments, and opinion terms from review sentences.
We propose a span-level bidirectional cross-attention framework for ASTE.
Our framework significantly outperforms state-of-the-art methods, achieving better performance in predicting triplets with multi-token entities.
arXiv Detail & Related papers (2022-04-27T02:55:43Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
We propose to explicitly teach the model to capture relevant contexts and entity types by supervising and augmenting intermediate steps (SAIS) for relation extraction.
Based on a broad spectrum of carefully designed tasks, our proposed SAIS method not only extracts relations of better quality due to more effective supervision, but also retrieves the corresponding supporting evidence more accurately.
arXiv Detail & Related papers (2021-09-24T17:37:35Z) - D-REX: Dialogue Relation Extraction with Explanations [65.3862263565638]
This work focuses on extracting explanations that indicate that a relation exists while using only partially labeled data.
We propose our model-agnostic framework, D-REX, a policy-guided semi-supervised algorithm that explains and ranks relations.
We find that about 90% of the time, human annotators prefer D-REX's explanations over a strong BERT-based joint relation extraction and explanation model.
arXiv Detail & Related papers (2021-09-10T22:30:48Z) - Aspect Sentiment Triplet Extraction Using Reinforcement Learning [14.21689018940387]
We present a novel paradigm, ASTE-RL, by regarding the aspect and opinion terms as arguments of the expressed sentiment.
We first focus on sentiments expressed in a sentence, then identify the target aspect and opinion terms for that sentiment.
This takes into account the mutual interactions among the triplet's components while improving exploration and sample efficiency.
arXiv Detail & Related papers (2021-08-13T07:38:48Z) - PAIR: Leveraging Passage-Centric Similarity Relation for Improving Dense
Passage Retrieval [87.68667887072324]
We propose a novel approach that leverages query-centric and PAssage-centric sImilarity Relations (called PAIR) for dense passage retrieval.
To implement our approach, we make three major technical contributions by introducing formal formulations of the two kinds of similarity relations.
Our approach significantly outperforms previous state-of-the-art models on both MSMARCO and Natural Questions datasets.
arXiv Detail & Related papers (2021-08-13T02:07:43Z) - A More Fine-Grained Aspect-Sentiment-Opinion Triplet Extraction Task [19.101354902943154]
We introduce a more fine-grained Aspect-Sentiment-Opinion Triplet Extraction Task.
The sentiment in a triplet extracted by ASOTE is the sentiment of the aspect term and opinion term pair.
We build four datasets for ASOTE based on several popular ABSA benchmarks.
arXiv Detail & Related papers (2021-03-29T00:42:51Z) - First Target and Opinion then Polarity: Enhancing Target-opinion
Correlation for Aspect Sentiment Triplet Extraction [45.82241446769157]
Aspect Sentiment Triplet Extraction (ASTE) aims to extract triplets from a sentence, including target entities, associated sentiment polarities, and opinion spans which rationalize the polarities.
Existing methods are short on building correlation between target-opinion pairs, and neglect the mutual interference among different sentiment triplets.
We propose a novel two-stage method which enhances the correlation between targets and opinions through sequence tagging.
arXiv Detail & Related papers (2021-02-17T03:28:17Z) - Position-Aware Tagging for Aspect Sentiment Triplet Extraction [37.76744150888183]
Aspect Sentiment Triplet Extraction (ASTE) is the task of extracting the triplets of target entities, their associated sentiment, and opinion spans explaining the reason for the sentiment.
Our observation is that the three elements within a triplet are highly related to each other, and this motivates us to build a joint model to extract such triplets.
We propose the first end-to-end model with a novel position-aware tagging scheme that is capable of jointly extracting the triplets.
arXiv Detail & Related papers (2020-10-06T10:40:34Z) - A Multi-task Learning Framework for Opinion Triplet Extraction [24.983625011760328]
We present a novel view of ABSA as an opinion triplet extraction task.
We propose a multi-task learning framework to jointly extract aspect terms and opinion terms.
We evaluate the proposed framework on four SemEval benchmarks for ASBA.
arXiv Detail & Related papers (2020-10-04T08:31:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.