NFTs to MARS: Multi-Attention Recommender System for NFTs
- URL: http://arxiv.org/abs/2306.10053v1
- Date: Tue, 13 Jun 2023 11:53:24 GMT
- Title: NFTs to MARS: Multi-Attention Recommender System for NFTs
- Authors: Seonmi Kim, Youngbin Lee, Yejin Kim, Joohwan Hong, and Yongjae Lee
- Abstract summary: We develop a Multi-Attention Recommender System for NFTs (NFT-MARS)
NFT-MARS has three key characteristics: graph attention to handle sparse user-item interactions, multi-modal attention to incorporate feature preference of users, and multi-task learning to consider the dual nature of NFTs as both artwork and financial assets.
- Score: 20.74874765792172
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recommender systems have become essential tools for enhancing user
experiences across various domains. While extensive research has been conducted
on recommender systems for movies, music, and e-commerce, the rapidly growing
and economically significant Non-Fungible Token (NFT) market remains
underexplored. The unique characteristics and increasing prominence of the NFT
market highlight the importance of developing tailored recommender systems to
cater to its specific needs and unlock its full potential. In this paper, we
examine the distinctive characteristics of NFTs and propose the first
recommender system specifically designed to address NFT market challenges. In
specific, we develop a Multi-Attention Recommender System for NFTs (NFT-MARS)
with three key characteristics: (1) graph attention to handle sparse user-item
interactions, (2) multi-modal attention to incorporate feature preference of
users, and (3) multi-task learning to consider the dual nature of NFTs as both
artwork and financial assets. We demonstrate the effectiveness of NFT-MARS
compared to various baseline models using the actual transaction data of NFTs
collected directly from blockchain for four of the most popular NFT
collections. The source code and data are available at
https://anonymous.4open.science/r/RecSys2023-93ED.
Related papers
- Multimodality Helps Few-Shot 3D Point Cloud Semantic Segmentation [61.91492500828508]
Few-shot 3D point cloud segmentation (FS-PCS) aims at generalizing models to segment novel categories with minimal support samples.
We introduce a cost-free multimodal FS-PCS setup, utilizing textual labels and the potentially available 2D image modality.
We propose a simple yet effective Test-time Adaptive Cross-modal Seg (TACC) technique to mitigate training bias.
arXiv Detail & Related papers (2024-10-29T19:28:41Z) - A Recommender System for NFT Collectibles with Item Feature [24.201581738408045]
This paper presents a recommender system for NFTs that utilize a variety of data sources to generate precise recommendations.
We develop a data-efficient graph-based recommender system to efficiently capture the complex relationship between each item and users.
arXiv Detail & Related papers (2024-03-27T06:59:39Z) - Learning Profitable NFT Image Diffusions via Multiple Visual-Policy
Guided Reinforcement Learning [69.60868581184366]
We propose a Diffusion-based generation framework with Multiple Visual-Policies as rewards for NFT images.
The proposed framework consists of a large language model (LLM), a diffusion-based image generator, and a series of visual rewards by design.
Our framework can generate NFT images showing more visually engaging elements and higher market value, compared with SOTA approaches.
arXiv Detail & Related papers (2023-06-20T17:59:46Z) - NFTVis: Visual Analysis of NFT Performance [12.491701063977825]
A non-fungible token (NFT) is a data unit stored on the blockchain.
Current rarity models have flaws and are sometimes not convincing.
It is difficult to take comprehensive consideration and analyze NFT performance efficiently.
arXiv Detail & Related papers (2023-06-05T09:02:48Z) - Show me your NFT and I tell you how it will perform: Multimodal
representation learning for NFT selling price prediction [2.578242050187029]
Non-Fungible Tokens (NFTs) represent deeds of ownership, based on blockchain technologies and smart contracts, of unique crypto assets on digital art forms (e.g., artworks or collectibles)
We propose MERLIN, a novel multimodal deep learning framework designed to train Transformer-based language and visual models, along with graph neural network models, on collections of NFTs' images and texts.
A key aspect in MERLIN is its independence on financial features, as it exploits only the primary data a user interested in NFT trading would like to deal with.
arXiv Detail & Related papers (2023-02-03T11:56:38Z) - Bubble or Not: Measurements, Analyses, and Findings on the Ethereum
ERC721 and ERC1155 Non-fungible Token Ecosystem [22.010657813215413]
The market capitalization of NFT reached 21.5 billion USD in 2021, almost 200 times of all previous transactions.
The rapid decline in NFT market fever in the second quarter of 2022 casts doubts on the ostensible boom in the NFT market.
By collecting data from the whole blockchain, we construct three graphs, namely NFT create graph, NFT transfer graph, and NFT hold graph, to characterize the NFT traders.
We propose new indicators to quantify the activeness and value of NFT and propose an algorithm that combines indicators and graph analyses to find bubble NFTs.
arXiv Detail & Related papers (2023-01-05T10:17:57Z) - Probably Something: A Multi-Layer Taxonomy of Non-Fungible Tokens [62.997667081978825]
Non-Fungible Tokens (NFTs) are hyped and increasingly marketed as essential building blocks of the Metaverse.
This paper aims to establish a fundamental and comprehensive understanding of NFTs by identifying and structuring common characteristics within a taxonomy.
arXiv Detail & Related papers (2022-08-29T18:00:30Z) - An Analysis of the Features Considerable for NFT Recommendations [0.0]
This research explores the methods that NFTs can be recommended to people who interact with NFT-marketplaces.
The outcome highlights the necessity of using multiple Recommender Systems to present the user with the best possible NFTs when interacting with decentralized systems.
arXiv Detail & Related papers (2022-05-01T12:11:17Z) - Batch Normalization Increases Adversarial Vulnerability and Decreases
Adversarial Transferability: A Non-Robust Feature Perspective [91.5105021619887]
Batch normalization (BN) has been widely used in modern deep neural networks (DNNs)
BN is observed to increase the model accuracy while at the cost of adversarial robustness.
It remains unclear whether BN mainly favors learning robust features (RFs) or non-robust features (NRFs)
arXiv Detail & Related papers (2020-10-07T10:24:33Z) - Modeling Personalized Item Frequency Information for Next-basket
Recommendation [63.94555438898309]
Next-basket recommendation (NBR) is prevalent in e-commerce and retail industry.
We argue that existing RNNs cannot directly capture item frequency information in the recommendation scenario.
We propose a simple item frequency based k-nearest neighbors (kNN) method to directly utilize these critical signals.
arXiv Detail & Related papers (2020-05-31T16:42:39Z) - The Microsoft Toolkit of Multi-Task Deep Neural Networks for Natural
Language Understanding [97.85957811603251]
We present MT-DNN, an open-source natural language understanding (NLU) toolkit that makes it easy for researchers and developers to train customized deep learning models.
Built upon PyTorch and Transformers, MT-DNN is designed to facilitate rapid customization for a broad spectrum of NLU tasks.
A unique feature of MT-DNN is its built-in support for robust and transferable learning using the adversarial multi-task learning paradigm.
arXiv Detail & Related papers (2020-02-19T03:05:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.