Multimodality Helps Few-Shot 3D Point Cloud Semantic Segmentation
- URL: http://arxiv.org/abs/2410.22489v2
- Date: Sun, 03 Nov 2024 19:00:34 GMT
- Title: Multimodality Helps Few-Shot 3D Point Cloud Semantic Segmentation
- Authors: Zhaochong An, Guolei Sun, Yun Liu, Runjia Li, Min Wu, Ming-Ming Cheng, Ender Konukoglu, Serge Belongie,
- Abstract summary: Few-shot 3D point cloud segmentation (FS-PCS) aims at generalizing models to segment novel categories with minimal support samples.
We introduce a cost-free multimodal FS-PCS setup, utilizing textual labels and the potentially available 2D image modality.
We propose a simple yet effective Test-time Adaptive Cross-modal Seg (TACC) technique to mitigate training bias.
- Score: 61.91492500828508
- License:
- Abstract: Few-shot 3D point cloud segmentation (FS-PCS) aims at generalizing models to segment novel categories with minimal annotated support samples. While existing FS-PCS methods have shown promise, they primarily focus on unimodal point cloud inputs, overlooking the potential benefits of leveraging multimodal information. In this paper, we address this gap by introducing a cost-free multimodal FS-PCS setup, utilizing textual labels and the potentially available 2D image modality. Under this easy-to-achieve setup, we present the MultiModal Few-Shot SegNet (MM-FSS), a model effectively harnessing complementary information from multiple modalities. MM-FSS employs a shared backbone with two heads to extract intermodal and unimodal visual features, and a pretrained text encoder to generate text embeddings. To fully exploit the multimodal information, we propose a Multimodal Correlation Fusion (MCF) module to generate multimodal correlations, and a Multimodal Semantic Fusion (MSF) module to refine the correlations using text-aware semantic guidance. Additionally, we propose a simple yet effective Test-time Adaptive Cross-modal Calibration (TACC) technique to mitigate training bias, further improving generalization. Experimental results on S3DIS and ScanNet datasets demonstrate significant performance improvements achieved by our method. The efficacy of our approach indicates the benefits of leveraging commonly-ignored free modalities for FS-PCS, providing valuable insights for future research. The code is available at https://github.com/ZhaochongAn/Multimodality-3D-Few-Shot
Related papers
- Adapting Segment Anything Model to Multi-modal Salient Object Detection with Semantic Feature Fusion Guidance [15.435695491233982]
We propose a novel framework to explore and exploit the powerful feature representation and zero-shot generalization ability of the Segment Anything Model (SAM) for multi-modal salient object detection (SOD)
We develop underlineSAM with seunderlinemantic funderlineeature fuunderlinesion guidancunderlinee (Sammese)
In the image encoder, a multi-modal adapter is proposed to adapt the single-modal SAM to multi-modal information. Specifically, in the mask decoder, a semantic-geometric
arXiv Detail & Related papers (2024-08-27T13:47:31Z) - U3M: Unbiased Multiscale Modal Fusion Model for Multimodal Semantic Segmentation [63.31007867379312]
We introduce U3M: An Unbiased Multiscale Modal Fusion Model for Multimodal Semantics.
We employ feature fusion at multiple scales to ensure the effective extraction and integration of both global and local features.
Experimental results demonstrate that our approach achieves superior performance across multiple datasets.
arXiv Detail & Related papers (2024-05-24T08:58:48Z) - LMFNet: An Efficient Multimodal Fusion Approach for Semantic Segmentation in High-Resolution Remote Sensing [25.016421338677816]
Current methods often process only two types of data, missing out on the rich information that additional modalities can provide.
We propose a novel textbfLightweight textbfMultimodal data textbfFusion textbfNetwork (LMFNet)
LMFNet accommodates various data types simultaneously, including RGB, NirRG, and DSM, through a weight-sharing, multi-branch vision transformer.
arXiv Detail & Related papers (2024-04-21T13:29:42Z) - CREMA: Generalizable and Efficient Video-Language Reasoning via Multimodal Modular Fusion [58.15403987979496]
CREMA is a generalizable, highly efficient, and modular modality-fusion framework for video reasoning.
We propose a novel progressive multimodal fusion design supported by a lightweight fusion module and modality-sequential training strategy.
We validate our method on 7 video-language reasoning tasks assisted by diverse modalities, including VideoQA and Video-Audio/3D/Touch/Thermal QA.
arXiv Detail & Related papers (2024-02-08T18:27:22Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - M$^3$Net: Multi-view Encoding, Matching, and Fusion for Few-shot
Fine-grained Action Recognition [80.21796574234287]
M$3$Net is a matching-based framework for few-shot fine-grained (FS-FG) action recognition.
It incorporates textitmulti-view encoding, textitmulti-view matching, and textitmulti-view fusion to facilitate embedding encoding, similarity matching, and decision making.
Explainable visualizations and experimental results demonstrate the superiority of M$3$Net in capturing fine-grained action details.
arXiv Detail & Related papers (2023-08-06T09:15:14Z) - TLDW: Extreme Multimodal Summarisation of News Videos [76.50305095899958]
We introduce eXtreme Multimodal Summarisation with Multimodal Output (XMSMO) for the scenario of TL;DW - Too Long; Didn't Watch, akin to TL;DR.
XMSMO aims to summarise a video-document pair into a summary with an extremely short length, which consists of one cover frame as the visual summary and one sentence as the textual summary.
Our method is trained, without using reference summaries, by optimising the visual and textual coverage from the perspectives of the distance between the semantic distributions under optimal transport plans.
arXiv Detail & Related papers (2022-10-16T08:19:59Z) - AttX: Attentive Cross-Connections for Fusion of Wearable Signals in
Emotion Recognition [15.21696076393078]
Cross-modal attentive connections is a new dynamic and effective technique for multimodal representation learning from wearable data.
We perform extensive experiments on three public multimodal wearable datasets, WESAD, SWELL-KW, and CASE.
Our method can result in superior or competitive performance to state-of-the-art and outperform a variety of baseline uni-modal and classical multimodal methods.
arXiv Detail & Related papers (2022-06-09T17:18:33Z) - Multi-modal land cover mapping of remote sensing images using pyramid
attention and gated fusion networks [20.66034058363032]
We propose a new multi-modality network for land cover mapping of multi-modal remote sensing data based on a novel pyramid attention fusion (PAF) module and a gated fusion unit (GFU)
PAF module is designed to efficiently obtain rich fine-grained contextual representations from each modality with a built-in cross-level and cross-view attention fusion mechanism.
GFU module utilizes a novel gating mechanism for early merging of features, thereby diminishing hidden redundancies and noise.
arXiv Detail & Related papers (2021-11-06T10:01:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.