Generate to Understand for Representation
- URL: http://arxiv.org/abs/2306.10056v1
- Date: Wed, 14 Jun 2023 06:00:18 GMT
- Title: Generate to Understand for Representation
- Authors: Changshang Xue, Xiande Zhong, Xiaoqing Liu
- Abstract summary: GUR is a pretraining framework that combines language modeling and contrastive learning objectives in a single training step.
GUR achieves impressive results without any labeled training data, outperforming all other pretrained baselines as a retriever at the recall benchmark in a zero-shot setting.
- Score: 3.5325087487696463
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, a significant number of high-quality pretrained models have
emerged, greatly impacting Natural Language Understanding (NLU), Natural
Language Generation (NLG), and Text Representation tasks. Traditionally, these
models are pretrained on custom domain corpora and finetuned for specific
tasks, resulting in high costs related to GPU usage and labor. Unfortunately,
recent trends in language modeling have shifted towards enhancing performance
through scaling, further exacerbating the associated costs.
Introducing GUR: a pretraining framework that combines language modeling and
contrastive learning objectives in a single training step. We select similar
text pairs based on their Longest Common Substring (LCS) from raw unlabeled
documents and train the model using masked language modeling and unsupervised
contrastive learning. The resulting model, GUR, achieves impressive results
without any labeled training data, outperforming all other pretrained baselines
as a retriever at the recall benchmark in a zero-shot setting. Additionally,
GUR maintains its language modeling ability, as demonstrated in our ablation
experiment. Our code is available at \url{https://github.com/laohur/GUR}.
Related papers
- Expedited Training of Visual Conditioned Language Generation via
Redundancy Reduction [61.16125290912494]
$textEVL_textGen$ is a framework designed for the pre-training of visually conditioned language generation models.
We show that our approach accelerates the training of vision-language models by a factor of 5 without a noticeable impact on overall performance.
arXiv Detail & Related papers (2023-10-05T03:40:06Z) - ReGen: Zero-Shot Text Classification via Training Data Generation with
Progressive Dense Retrieval [22.882301169283323]
We propose a retrieval-enhanced framework to create training data from a general-domain unlabeled corpus.
Experiments on nine datasets demonstrate that REGEN achieves 4.3% gain over the strongest baselines and saves around 70% of the time compared to baselines using large NLG models.
arXiv Detail & Related papers (2023-05-18T04:30:09Z) - Pre-Training to Learn in Context [138.0745138788142]
The ability of in-context learning is not fully exploited because language models are not explicitly trained to learn in context.
We propose PICL (Pre-training for In-Context Learning), a framework to enhance the language models' in-context learning ability.
Our experiments show that PICL is more effective and task-generalizable than a range of baselines, outperforming larger language models with nearly 4x parameters.
arXiv Detail & Related papers (2023-05-16T03:38:06Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
We propose a new pre-training objective, Sparse Latent Typing, which enables the model to sparsely extract sentence-level keywords with diverse latent types.
Experimental results show that our model is able to learn interpretable latent type categories in a self-supervised manner without using any external knowledge.
arXiv Detail & Related papers (2022-10-23T00:37:08Z) - A Generative Language Model for Few-shot Aspect-Based Sentiment Analysis [90.24921443175514]
We focus on aspect-based sentiment analysis, which involves extracting aspect term, category, and predicting their corresponding polarities.
We propose to reformulate the extraction and prediction tasks into the sequence generation task, using a generative language model with unidirectional attention.
Our approach outperforms the previous state-of-the-art (based on BERT) on average performance by a large margins in few-shot and full-shot settings.
arXiv Detail & Related papers (2022-04-11T18:31:53Z) - ANNA: Enhanced Language Representation for Question Answering [5.713808202873983]
We show how approaches affect performance individually and that the approaches are jointly considered in pre-training models.
We propose an extended pre-training task, and a new neighbor-aware mechanism that attends neighboring tokens more to capture the richness of context for pre-training language modeling.
Our best model achieves new state-of-the-art results of 95.7% F1 and 90.6% EM on SQuAD 1.1 and also outperforms existing pre-trained language models such as RoBERTa, ALBERT, ELECTRA, and XLNet.
arXiv Detail & Related papers (2022-03-28T05:26:52Z) - Interpreting Language Models Through Knowledge Graph Extraction [42.97929497661778]
We compare BERT-based language models through snapshots of acquired knowledge at sequential stages of the training process.
We present a methodology to unveil a knowledge acquisition timeline by generating knowledge graph extracts from cloze "fill-in-the-blank" statements.
We extend this analysis to a comparison of pretrained variations of BERT models (DistilBERT, BERT-base, RoBERTa)
arXiv Detail & Related papers (2021-11-16T15:18:01Z) - Pre-Training a Language Model Without Human Language [74.11825654535895]
We study how the intrinsic nature of pre-training data contributes to the fine-tuned downstream performance.
We find that models pre-trained on unstructured data beat those trained directly from scratch on downstream tasks.
To our great astonishment, we uncover that pre-training on certain non-human language data gives GLUE performance close to performance pre-trained on another non-English language.
arXiv Detail & Related papers (2020-12-22T13:38:06Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.