論文の概要: Dynamic Size Message Scheduling for Multi-Agent Communication under
Limited Bandwidth
- arxiv url: http://arxiv.org/abs/2306.10134v1
- Date: Fri, 16 Jun 2023 18:33:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-22 00:03:27.455471
- Title: Dynamic Size Message Scheduling for Multi-Agent Communication under
Limited Bandwidth
- Title(参考訳): 帯域制限されたマルチエージェント通信のための動的サイズメッセージスケジューリング
- Authors: Qingshuang Sun, Denis Steckelmacher, Yuan Yao, Ann Now\'e, Rapha\"el
Avalos
- Abstract要約: 本稿では,動的サイズメッセージスケジューリング(DSMS)手法を提案する。
我々の貢献は、フーリエ変換に基づく圧縮技術を用いて、メッセージサイズを適応的に調整することにある。
実験の結果,DSMSは多エージェント協調作業の性能を著しく向上させることがわかった。
- 参考スコア(独自算出の注目度): 5.590219593864609
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Communication plays a vital role in multi-agent systems, fostering
collaboration and coordination. However, in real-world scenarios where
communication is bandwidth-limited, existing multi-agent reinforcement learning
(MARL) algorithms often provide agents with a binary choice: either
transmitting a fixed number of bytes or no information at all. This limitation
hinders the ability to effectively utilize the available bandwidth. To overcome
this challenge, we present the Dynamic Size Message Scheduling (DSMS) method,
which introduces a finer-grained approach to scheduling by considering the
actual size of the information to be exchanged. Our contribution lies in
adaptively adjusting message sizes using Fourier transform-based compression
techniques, enabling agents to tailor their messages to match the allocated
bandwidth while striking a balance between information loss and transmission
efficiency. Receiving agents can reliably decompress the messages using the
inverse Fourier transform. Experimental results demonstrate that DSMS
significantly improves performance in multi-agent cooperative tasks by
optimizing the utilization of bandwidth and effectively balancing information
value.
- Abstract(参考訳): コミュニケーションはマルチエージェントシステムにおいて重要な役割を担い、協調と協調を促進する。
しかし、通信が帯域幅に制限されている現実のシナリオでは、既存のマルチエージェント強化学習(MARL)アルゴリズムはエージェントに2進選択を与えることが多い。
この制限は、利用可能な帯域幅を効果的に活用する能力を妨げる。
この課題を克服するために,動的サイズメッセージスケジューリング(DSMS)手法を提案する。
我々の貢献は、フーリエ変換に基づく圧縮技術を用いて、メッセージサイズを適応的に調整することであり、エージェントは、情報損失と伝送効率のバランスを保ちながら、割り当てられた帯域幅に合わせてメッセージを調整できる。
受信エージェントは、逆フーリエ変換を用いてメッセージを確実に分解することができる。
実験の結果,dsmは帯域幅の利用を最適化し,情報価値の効果的なバランスをとることにより,マルチエージェント協調作業の性能を大幅に向上させることがわかった。
関連論文リスト
- Multi-Receiver Task-Oriented Communications via Multi-Task Deep Learning [49.83882366499547]
本稿では、送信機が複数の受信機と通信する環境でのタスク指向通信について検討する。
複数のタスクを完了し、複数の受信機と通信する共同最適化のためのマルチタスク深層学習手法を提案する。
論文 参考訳(メタデータ) (2023-08-14T01:34:34Z) - Communication-Efficient Framework for Distributed Image Semantic
Wireless Transmission [68.69108124451263]
IoTデバイスを用いたマルチタスク分散画像伝送のためのFederated Learning-based semantic communication (FLSC)フレームワーク。
各リンクは階層型視覚変換器(HVT)ベースの抽出器とタスク適応トランスレータで構成される。
チャネル状態情報に基づく多重出力多重出力伝送モジュール。
論文 参考訳(メタデータ) (2023-08-07T16:32:14Z) - Research on Multi-Agent Communication and Collaborative Decision-Making
Based on Deep Reinforcement Learning [0.0]
本論文は,マルチエージェント・プロキシ・ポリシー最適化アルゴリズムに基づくマルチエージェントの協調的意思決定について考察する。
異なるエージェントは、エージェント間の情報交換を通じて局所的な観測によって引き起こされる非定常性を緩和することができる。
実験結果から,マルチエージェント環境の非定常性を改善する効果が得られた。
論文 参考訳(メタデータ) (2023-05-23T14:20:14Z) - Optimization of Image Transmission in a Cooperative Semantic
Communication Networks [68.2233384648671]
画像伝送のためのセマンティック通信フレームワークを開発した。
サーバは、セマンティックコミュニケーション技術を用いて、画像の集合を協調的にユーザへ送信する。
抽出した意味情報と原画像との相関関係を測定するために,マルチモーダル・メトリックを提案する。
論文 参考訳(メタデータ) (2023-01-01T15:59:13Z) - Multi-agent Communication with Graph Information Bottleneck under
Limited Bandwidth (a position paper) [92.11330289225981]
多くの実世界のシナリオでは、通信は高価であり、マルチエージェントシステムの帯域幅には一定の制約がある。
通信資源を占有する冗長なメッセージは、情報的メッセージの送信をブロックし、パフォーマンスを損なう。
本稿では,通信グラフ内の構造情報とノード情報を効果的に圧縮し,帯域幅に制約のある設定に対処する,新しいマルチエージェント通信モジュールCommGIBを提案する。
論文 参考訳(メタデータ) (2021-12-20T07:53:44Z) - Distributed Adaptive Learning Under Communication Constraints [54.22472738551687]
本研究では,コミュニケーション制約下での運用を目的とした適応型分散学習戦略について検討する。
我々は,ストリーミングデータの連続的な観察から,オンライン最適化問題を解決しなければならないエージェントのネットワークを考える。
論文 参考訳(メタデータ) (2021-12-03T19:23:48Z) - Task-Oriented Communication for Multi-Device Cooperative Edge Inference [14.249444124834719]
協調エッジ推論は、単一デバイスの限られた感知能力を克服することができるが、通信オーバーヘッドを大幅に増加させ、過度の遅延を引き起こす可能性がある。
タスク指向方式で局所特徴抽出と分散特徴符号化を最適化する学習型通信方式を提案する。
論文 参考訳(メタデータ) (2021-09-01T03:56:20Z) - Communication-Efficient Split Learning Based on Analog Communication and
Over the Air Aggregation [48.150466900765316]
スプリットラーニング(SL)は、その固有のプライバシー保護機能と、限られた計算能力を持つデバイスに対する協調推論を可能にする能力により、最近人気を集めている。
標準SLアルゴリズムは、理想的なデジタル通信システムを想定し、通信帯域不足の問題を無視している。
本稿では,エージェント側で追加層を導入し,重みとバイアスの選択を制約し,空気の凝集を確実にするための新しいSLフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-02T07:49:41Z) - Learning Task-Oriented Communication for Edge Inference: An Information
Bottleneck Approach [3.983055670167878]
ローエンドエッジ装置は、ローカルデータサンプルの抽出された特徴ベクトルを強力なエッジサーバに送信して処理する。
帯域幅が限られているため、データを低遅延推論のための情報的かつコンパクトな表現に符号化することが重要である。
特徴抽出,ソース符号化,チャネル符号化を協調的に最適化する学習型通信方式を提案する。
論文 参考訳(メタデータ) (2021-02-08T12:53:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。