Samplet basis pursuit: Multiresolution scattered data approximation with sparsity constraints
- URL: http://arxiv.org/abs/2306.10180v4
- Date: Tue, 2 Apr 2024 15:40:16 GMT
- Title: Samplet basis pursuit: Multiresolution scattered data approximation with sparsity constraints
- Authors: Davide Baroli, Helmut Harbrecht, Michael Multerer,
- Abstract summary: We consider scattered data approximation in samplet coordinates with $ell_1$-regularization.
By using the Riesz isometry, we embed samplets into reproducing kernel Hilbert spaces.
We argue that the class of signals that are sparse with respect to the embedded samplet basis is considerably larger than the class of signals that are sparse with respect to the basis of kernel translates.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider scattered data approximation in samplet coordinates with $\ell_1$-regularization. The application of an $\ell_1$-regularization term enforces sparsity of the coefficients with respect to the samplet basis. Samplets are wavelet-type signed measures, which are tailored to scattered data. Therefore, samplets enable the use of well-established multiresolution techniques on general scattered data sets. They provide similar properties as wavelets in terms of localization, multiresolution analysis, and data compression. By using the Riesz isometry, we embed samplets into reproducing kernel Hilbert spaces and discuss the properties of the resulting functions. We argue that the class of signals that are sparse with respect to the embedded samplet basis is considerably larger than the class of signals that are sparse with respect to the basis of kernel translates. Vice versa, every signal that is a linear combination of only a few kernel translates is sparse in samplet coordinates. We propose the rapid solution of the problem under consideration by combining soft-shrinkage with the semi-smooth Newton method. Leveraging on the sparse representation of kernel matrices in samplet coordinates, this approach converges faster than the fast iterative shrinkage thresholding algorithm and is feasible for large-scale data. Numerical benchmarks are presented and demonstrate the superiority of the multiresolution approach over the single-scale approach. As large-scale applications, the surface reconstruction from scattered data and the reconstruction of scattered temperature data using a dictionary of multiple kernels are considered.
Related papers
- Multiscale scattered data analysis in samplet coordinates [0.0]
We study multiscale data scattered schemes for globally supported radial basis functions.
We suggest to represent the resulting generalized Vandermonde matrices in samplet coordinates.
We prove that the condition numbers of the linear systems at each level remain bounded independent of the particular level.
arXiv Detail & Related papers (2024-09-23T08:07:47Z) - Optimal sampling for least-squares approximation [0.8702432681310399]
We introduce the Christoffel function as a key quantity in the analysis of (weighted) least-squares approximation from random samples.
We show how it can be used to construct sampling strategies that possess near-optimal sample complexity.
arXiv Detail & Related papers (2024-09-04T00:06:23Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Score-based Diffusion Models in Function Space [140.792362459734]
Diffusion models have recently emerged as a powerful framework for generative modeling.
We introduce a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Subspace clustering in high-dimensions: Phase transitions \&
Statistical-to-Computational gap [24.073221004661427]
A simple model to study subspace clustering is the high-dimensional $k$-Gaussian mixture model.
We provide an exact characterization of the statistically optimal reconstruction error in this model in the high-dimensional regime with extensive sparsity.
arXiv Detail & Related papers (2022-05-26T17:47:35Z) - Super-resolution GANs of randomly-seeded fields [68.8204255655161]
We propose a novel super-resolution generative adversarial network (GAN) framework to estimate field quantities from random sparse sensors.
The algorithm exploits random sampling to provide incomplete views of the high-resolution underlying distributions.
The proposed technique is tested on synthetic databases of fluid flow simulations, ocean surface temperature distributions measurements, and particle image velocimetry data.
arXiv Detail & Related papers (2022-02-23T18:57:53Z) - Samplets: A new paradigm for data compression [0.0]
We introduce the novel concept of samplets by transferring the construction of Tausch-White wavelets to the realm of data.
This way we obtain a multilevel representation of discrete data which enables data compression, detection of singularities and adaptivity.
arXiv Detail & Related papers (2021-07-07T16:25:12Z) - Towards Sample-Optimal Compressive Phase Retrieval with Sparse and
Generative Priors [59.33977545294148]
We show that $O(k log L)$ samples suffice to guarantee that the signal is close to any vector that minimizes an amplitude-based empirical loss function.
We adapt this result to sparse phase retrieval, and show that $O(s log n)$ samples are sufficient for a similar guarantee when the underlying signal is $s$-sparse and $n$-dimensional.
arXiv Detail & Related papers (2021-06-29T12:49:54Z) - Revisiting the Sample Complexity of Sparse Spectrum Approximation of
Gaussian Processes [60.479499225746295]
We introduce a new scalable approximation for Gaussian processes with provable guarantees which hold simultaneously over its entire parameter space.
Our approximation is obtained from an improved sample complexity analysis for sparse spectrum Gaussian processes (SSGPs)
arXiv Detail & Related papers (2020-11-17T05:41:50Z) - Non-Adaptive Adaptive Sampling on Turnstile Streams [57.619901304728366]
We give the first relative-error algorithms for column subset selection, subspace approximation, projective clustering, and volume on turnstile streams that use space sublinear in $n$.
Our adaptive sampling procedure has a number of applications to various data summarization problems that either improve state-of-the-art or have only been previously studied in the more relaxed row-arrival model.
arXiv Detail & Related papers (2020-04-23T05:00:21Z) - Diversity sampling is an implicit regularization for kernel methods [13.136143245702915]
We show that Nystr"om kernel regression with diverse landmarks increases the accuracy of the regression in sparser regions of the dataset.
A greedy is also proposed to select diverse samples of significant size within large datasets when exact DPP sampling is not practically feasible.
arXiv Detail & Related papers (2020-02-20T08:24:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.