Multiresolution local smoothness detection in non-uniformly sampled multivariate signals
- URL: http://arxiv.org/abs/2507.13480v1
- Date: Thu, 17 Jul 2025 18:46:01 GMT
- Title: Multiresolution local smoothness detection in non-uniformly sampled multivariate signals
- Authors: Sara Avesani, Gianluca Giacchi, Michael Multerer,
- Abstract summary: We introduce a (near) linear-time algorithm for detecting the local regularity in non-uniformly sampled multivariate signals.<n>Our approach quantifies regularity within the framework of microlocal spaces introduced by Jaffard.<n>We derive decay estimates for functions belonging to classical H"older spaces and Sobolev-Slobodeckij spaces.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inspired by edge detection based on the decay behavior of wavelet coefficients, we introduce a (near) linear-time algorithm for detecting the local regularity in non-uniformly sampled multivariate signals. Our approach quantifies regularity within the framework of microlocal spaces introduced by Jaffard. The central tool in our analysis is the fast samplet transform, a distributional wavelet transform tailored to scattered data. We establish a connection between the decay of samplet coefficients and the pointwise regularity of multivariate signals. As a by product, we derive decay estimates for functions belonging to classical H\"older spaces and Sobolev-Slobodeckij spaces. While traditional wavelets are effective for regularity detection in low-dimensional structured data, samplets demonstrate robust performance even for higher dimensional and scattered data. To illustrate our theoretical findings, we present extensive numerical studies detecting local regularity of one-, two- and three-dimensional signals, ranging from non-uniformly sampled time series over image segmentation to edge detection in point clouds.
Related papers
- LSCD: Lomb-Scargle Conditioned Diffusion for Time series Imputation [55.800319453296886]
Time series with missing or irregularly sampled data are a persistent challenge in machine learning.<n>We introduce a different Lombiable--Scargle layer that enables a reliable computation of the power spectrum of irregularly sampled data.
arXiv Detail & Related papers (2025-06-20T14:48:42Z) - Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
We study the theoretical aspects of score-based discrete diffusion models under the Continuous Time Markov Chain (CTMC) framework.<n>We introduce a discrete-time sampling algorithm in the general state space $[S]d$ that utilizes score estimators at predefined time points.<n>Our convergence analysis employs a Girsanov-based method and establishes key properties of the discrete score function.
arXiv Detail & Related papers (2024-10-03T09:07:13Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Sampling (AIS) synthesizes weighted samples from an intractable distribution.
We propose the Constant Rate AIS algorithm and its efficient implementation for $alpha$-divergences.
arXiv Detail & Related papers (2023-06-27T08:15:28Z) - Samplet basis pursuit: Multiresolution scattered data approximation with sparsity constraints [0.0]
We consider scattered data approximation in samplet coordinates with $ell_1$-regularization.
By using the Riesz isometry, we embed samplets into reproducing kernel Hilbert spaces.
We argue that the class of signals that are sparse with respect to the embedded samplet basis is considerably larger than the class of signals that are sparse with respect to the basis of kernel translates.
arXiv Detail & Related papers (2023-06-16T21:20:49Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Conditioning Normalizing Flows for Rare Event Sampling [61.005334495264194]
We propose a transition path sampling scheme based on neural-network generated configurations.
We show that this approach enables the resolution of both the thermodynamics and kinetics of the transition region.
arXiv Detail & Related papers (2022-07-29T07:56:10Z) - Scale Dependencies and Self-Similar Models with Wavelet Scattering
Spectra [1.5866079116942815]
A complex wavelet transform computes signal variations at each scale.
Dependencies across scales are captured by the joint correlation across time and scales of wavelet coefficients.
We show that this vector of moments characterizes a wide range of non-Gaussian properties of multi-scale processes.
arXiv Detail & Related papers (2022-04-19T22:31:13Z) - SRMD: Sparse Random Mode Decomposition [0.0]
We propose a random feature method for analyzing time-series data by constructing a sparse approximation to the spectrogram.
The sparsification of the spectrogram leads to a sharp separation between time-frequency clusters which makes it easier to identify intrinsic modes.
The applications include signal representation, outlier removal, and mode decomposition.
arXiv Detail & Related papers (2022-04-12T22:40:10Z) - Parametric Scattering Networks [23.544950229208485]
We adapt wavelet filters to produce problem-specific parametrizations of the scattering transform.
We show that our learned versions of the scattering transform yield significant performance gains over the standard scattering transform in the small sample classification settings.
arXiv Detail & Related papers (2021-07-20T14:52:48Z) - FFD: Fast Feature Detector [22.51804239092462]
We show that robust and accurate keypoints exist in the specific scale-space domain.
It is proved that setting the scale-space pyramid's smoothness ratio and blurring to 2 and 0.627, respectively, facilitates the detection of reliable keypoints.
arXiv Detail & Related papers (2020-12-01T21:56:35Z) - Spatially Adaptive Inference with Stochastic Feature Sampling and
Interpolation [72.40827239394565]
We propose to compute features only at sparsely sampled locations.
We then densely reconstruct the feature map with an efficient procedure.
The presented network is experimentally shown to save substantial computation while maintaining accuracy over a variety of computer vision tasks.
arXiv Detail & Related papers (2020-03-19T15:36:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.