Cold hybrid electrical-optical ion trap
- URL: http://arxiv.org/abs/2306.10366v1
- Date: Sat, 17 Jun 2023 14:44:31 GMT
- Title: Cold hybrid electrical-optical ion trap
- Authors: Jin-Ming Cui, Shi-Jia Sun, Xi-Wang Luo, Yun-Feng Huang, Chuan-Feng Li,
Guang-Can Guo
- Abstract summary: hybrid ion trapping method by combining a Paul trap with optical tweezers.
Features will enable cold collisions between an ion and an atom in the $s$-wave regime.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advances in research such as quantum information and quantum chemistry
require subtle methods for trapping particles (including ions, neutral atoms,
molecules, etc.). Here we propose a hybrid ion trapping method by combining a
Paul trap with optical tweezers. The trap combines the advances of the
deep-potential feature for the Paul trap and the micromotion-free feature for
the optical dipole trap. By modulating the optical-dipole trap synchronously
with the radio frequency voltage of the Paul trap, the alternating electrical
force in the trap center is fully counteracted, and the micromotion temperature
of a cold trapped ion can reach the order of nK while the trap depth is beyond
300K. These features will enable cold collisions between an ion and an atom in
the $s$-wave regime and stably trap the produced molecular ion in the cold
hybrid system. This will provide a unique platform for probing the interactions
between the ions and the surrounding neutral particles and enable the
investigation of new reaction pathways and reaction products in the cold
regime.
Related papers
- Realization of a chip-based hybrid trapping setup for $^{87}$Rb atoms
and Yb$^{+}$ Ion crystals [40.48245609592348]
Hybrid quantum systems integrate laser-cooled trapped ions and ultracold quantum gases within a single experimental configuration.
This study introduces the development and experimental validation of an ion trap chip that incorporates a flat atomic chip trap beneath it.
arXiv Detail & Related papers (2024-01-05T19:30:47Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Hybrid Trapping of $^{87}$Rb Atoms and Yb$^{+}$ Ions in a Chip-Based
Experimental Setup [31.285028100381137]
Hybrid quantum systems that unite laser-cooled trapped ions and ultracold quantum gases in a single experimental setup have opened a rapidly advancing field of study.
We present a fully developed and tested ion trap chip and propose a flat chip trap that can be placed beneath the ion trap.
arXiv Detail & Related papers (2023-01-25T23:12:56Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - High-resolution 'magic'-field spectroscopy on trapped polyatomic
molecules [62.997667081978825]
Rapid progress in cooling and trapping of molecules has enabled first experiments on high resolution spectroscopy of trapped diatomic molecules.
Extending this work to polyatomic molecules provides unique opportunities due to more complex geometries and additional internal degrees of freedom.
arXiv Detail & Related papers (2021-10-21T15:46:17Z) - Buffer gas cooling of ions in time-dependent traps using ultracold atoms [0.0]
We present results on numerical simulations of trapped ion buffer gas cooling using an ultracold atomic gas.
We find that very similar ion energies can be reached in all of them even when considering experimental imperfections that cause so-called excess micromotion.
arXiv Detail & Related papers (2021-09-30T15:12:41Z) - Algorithmic Ground-state Cooling of Weakly-Coupled Oscillators using
Quantum Logic [52.77024349608834]
We introduce a novel algorithmic cooling protocol for transferring phonons from poorly- to efficiently-cooled modes.
We demonstrate it experimentally by simultaneously bringing two motional modes of a Be$+$-Ar$13+$ mixed Coulomb crystal close to their zero-point energies.
We reach the lowest temperature reported for a highly charged ion, with a residual temperature of only $Tlesssim200mathrmmu K$ in each of the two modes.
arXiv Detail & Related papers (2021-02-24T17:46:15Z) - Improving Efficiency of Sympathetic Cooling in Atom-Ion and Atom-Atom
Confined Collisions [0.0]
We propose a new way for sympathetic cooling of ions in an electromagnetic Paul trap.
It implies the use for this purpose of cold buffer atoms in the region of atom-ion confinement-induced resonance.
We show that the destructive effect of ion micromotion on its sympathetic cooling can however be suppressed in the vicinity of the atom-ion CIR.
arXiv Detail & Related papers (2021-01-10T15:18:38Z) - Trapping, Shaping and Isolating of Ion Coulomb Crystals via
State-selective Optical Potentials [55.41644538483948]
In conventional ion traps, the trapping potential is close to independent of the electronic state, providing confinement for ions dependent on their charge-to-mass ratio $Q/m$.
Here we experimentally study optical dipole potentials for $138mathrmBa+$ ions stored within two distinctive traps operating at 532 nm and 1064 nm.
arXiv Detail & Related papers (2020-10-26T14:36:48Z) - Electro-optical ion trap for experiments with atom-ion quantum hybrid
systems [0.0]
atom-ion hybrid systems are characterized by the presence of a new tool in the experimental AMO toolbox: atom-ion interactions.
One of the main limitations in state-of-the-art atom-ion experiments is represented by the micromotion component of the ions' dynamics in a Paul trap.
Here we report the design and the simulation of a novel ion trapping setup especially conceived for the integration with an ultracold atoms experiment.
arXiv Detail & Related papers (2020-01-31T17:31:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.