Realization of a chip-based hybrid trapping setup for $^{87}$Rb atoms
and Yb$^{+}$ Ion crystals
- URL: http://arxiv.org/abs/2401.03039v1
- Date: Fri, 5 Jan 2024 19:30:47 GMT
- Title: Realization of a chip-based hybrid trapping setup for $^{87}$Rb atoms
and Yb$^{+}$ Ion crystals
- Authors: Abasalt Bahrami and Ferdinand Schmidt-Kaler
- Abstract summary: Hybrid quantum systems integrate laser-cooled trapped ions and ultracold quantum gases within a single experimental configuration.
This study introduces the development and experimental validation of an ion trap chip that incorporates a flat atomic chip trap beneath it.
- Score: 40.48245609592348
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hybrid quantum systems integrate laser-cooled trapped ions and ultracold
quantum gases within a single experimental configuration, offering vast
potential for applications in quantum chemistry, polaron physics, quantum
information processing, and quantum simulations. In this study, we introduce
the development and experimental validation of an ion trap chip that
incorporates a flat atomic chip trap directly beneath it. This innovative
design addresses specific challenges associated with hybrid atom-ion traps by
providing precisely aligned and stable components, facilitating independent
adjustments of the depth of the atomic trapping potential and the positioning
of trapped ions. Our findings include successful loading of the ion trap with
linear Yb$^{+}$ ion crystals and the loading of neutral $^{87}$Rb atoms into a
mirror magneto-optical trap (mMOT)
Related papers
- Cavity Quantum Electrodynamics with Atom Arrays in Free Space [0.3277163122167433]
Cavity quantum electrodynamics (cavity QED) enables the control of light-matter interactions at the single-photon level.
We propose a cavity QED architecture based on atoms trapped in free space.
We show that a pair of two-dimensional, ordered arrays of atoms can be described by conventional cavity QED parameters.
arXiv Detail & Related papers (2024-09-23T18:01:27Z) - Resolved-sideband cooling of a single $^9$Be$^+$ ion in a Penning trap [0.0]
Key ingredient is ground-state cooling of the particle's motion through resolved-sideband laser cooling.
We demonstrate resolved-sideband laser cooling of the axial motion of a single $9$Be$+$ ion in a cryogenic 5 Tesla Penning trap system.
arXiv Detail & Related papers (2023-10-27T16:50:14Z) - Ablation loading of barium ions into a surface electrode trap [0.0]
Trapped-ion quantum information processing may benefit from qubits encoded in isotopes that are practically available in only small quantities.
Laser ablation provides a method of controllably liberating neutral atoms or ions from low-volume targets.
Here we investigate ablation-based ion loading into surface-electrode traps of different sizes to test a model describing ion loading probability.
arXiv Detail & Related papers (2023-03-03T18:50:04Z) - Hybrid Trapping of $^{87}$Rb Atoms and Yb$^{+}$ Ions in a Chip-Based
Experimental Setup [31.285028100381137]
Hybrid quantum systems that unite laser-cooled trapped ions and ultracold quantum gases in a single experimental setup have opened a rapidly advancing field of study.
We present a fully developed and tested ion trap chip and propose a flat chip trap that can be placed beneath the ion trap.
arXiv Detail & Related papers (2023-01-25T23:12:56Z) - Studying chirality imbalance with quantum algorithms [62.997667081978825]
We employ the (1+1) dimensional Nambu-Jona-Lasinio (NJL) model to study the chiral phase structure and chirality charge density of strongly interacting matter.
By performing the Quantum imaginary time evolution (QITE) algorithm, we simulate the (1+1) dimensional NJL model on the lattice at various temperature $T$ and chemical potentials $mu$, $mu_5$.
arXiv Detail & Related papers (2022-10-06T17:12:33Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
No class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory.
Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons.
This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.
arXiv Detail & Related papers (2022-05-26T16:33:51Z) - Deterministic single-atom source of quasi-superradiant $N$-photon pulses [62.997667081978825]
Scheme operates with laser and cavity fields detuned from the atomic transition by much more than the excited-state hyperfine splitting.
This enables reduction of the dynamics to that of a simple, cavity-damped Tavis-Cummings model with the collective spin determined by the total angular momentum of the ground hyperfine level.
arXiv Detail & Related papers (2020-12-01T03:55:27Z) - Deterministic Single Ion Implantation with 99.87% Confidence for
Scalable Donor-Qubit Arrays in Silicon [44.62475518267084]
Group-V-donor spins are attractive qubits for large-scale quantum computer devices.
Group-V-donor spins implanted in an isotopically purified $28$Si crystal make them attractive qubits.
We demonstrate the implantation of single low-energy (14 keV) P$+$ ions with an unprecedented $99.87pm0.02$% confidence.
arXiv Detail & Related papers (2020-09-07T05:23:07Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.