論文の概要: Object counting from aerial remote sensing images: application to
wildlife and marine mammals
- arxiv url: http://arxiv.org/abs/2306.10439v1
- Date: Sat, 17 Jun 2023 23:14:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-21 20:42:06.314886
- Title: Object counting from aerial remote sensing images: application to
wildlife and marine mammals
- Title(参考訳): 空中リモートセンシング画像からの物体数:野生動物および海洋哺乳動物への応用
- Authors: Tanya Singh, Hugo Gangloff, Minh-Tan Pham
- Abstract要約: 人類形成活動は野生生物や海洋動物相に脅威をもたらす。
本研究は、深層学習技術を用いて、動物の計数作業を自動化する。
複雑な画像背景条件にもかかわらず、モデルは正確に動物を特定する。
- 参考スコア(独自算出の注目度): 4.812718493682454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anthropogenic activities pose threats to wildlife and marine fauna, prompting
the need for efficient animal counting methods. This research study utilizes
deep learning techniques to automate counting tasks. Inspired by previous
studies on crowd and animal counting, a UNet model with various backbones is
implemented, which uses Gaussian density maps for training, bypassing the need
of training a detector. The new model is applied to the task of counting
dolphins and elephants in aerial images. Quantitative evaluation shows
promising results, with the EfficientNet-B5 backbone achieving the best
performance for African elephants and the ResNet18 backbone for dolphins. The
model accurately locates animals despite complex image background conditions.
By leveraging artificial intelligence, this research contributes to wildlife
conservation efforts and enhances coexistence between humans and wildlife
through efficient object counting without detection from aerial remote sensing.
- Abstract(参考訳): 人為的な活動は野生動物や海洋動物に脅威を与え、効率的な動物の数え方の必要性を招いた。
本研究は、深層学習技術を用いてカウントタスクを自動化する。
群衆と動物の計数に関する以前の研究に触発されて、様々なバックボーンを持つunetモデルが実装され、ガウス密度マップをトレーニングに使用し、検出器のトレーニングを不要にしている。
新しいモデルは、空中画像でイルカやゾウを数えることに適用されている。
EfficientNet-B5バックボーンはアフリカゾウにとって最高のパフォーマンスを達成し、ResNet18バックボーンはイルカにとって有望な結果を示している。
複雑な画像背景条件にもかかわらず、モデルは正確に動物を特定する。
この研究は、人工知能を活用することで、野生生物の保全に寄与し、空中リモートセンシングから検出することなく効率的な物体数による人間と野生生物の共存を促進する。
関連論文リスト
- Detecting Endangered Marine Species in Autonomous Underwater Vehicle Imagery Using Point Annotations and Few-Shot Learning [5.439798554380394]
AUV(Autonomous Underwater Vehicles)が収集した海底画像は、より広い生息環境の中で個人を特定するために利用することができる。
機械学習モデルは、訓練されたオブジェクト検出器を使用して、画像中の特定の種の存在を特定するために使用することができる。
本論文は, 数発学習における最近の研究に触発され, 一般的な海洋生物のイメージやアノテーションを利用して, 希少種と秘密種を識別する能力を高める。
論文 参考訳(メタデータ) (2024-06-04T03:31:42Z) - Multimodal Foundation Models for Zero-shot Animal Species Recognition in
Camera Trap Images [57.96659470133514]
モーションアクティベートカメラトラップは、世界中の野生生物を追跡・監視するための効率的なツールである。
教師付き学習技術は、そのような画像を分析するためにうまく展開されているが、そのような訓練には専門家のアノテーションが必要である。
コストのかかるラベル付きデータへの依存を減らすことは、人間の労働力を大幅に減らした大規模野生生物追跡ソリューションを開発する上で、大きな可能性を秘めている。
論文 参考訳(メタデータ) (2023-11-02T08:32:00Z) - Whale Detection Enhancement through Synthetic Satellite Images [13.842008598751445]
実際のデータのみをトレーニングに使用した場合と比較して,捕鯨の検出において15%の性能向上が達成できることが示されている。
シミュレーションプラットフォームSeaDroneSim2のコードをオープンソースとして公開しています。
論文 参考訳(メタデータ) (2023-08-15T13:35:29Z) - Deep object detection for waterbird monitoring using aerial imagery [56.1262568293658]
本研究では,商用ドローンで収集した空中画像を用いて,水鳥の正確な検出,数え,監視に使用できる深層学習パイプラインを提案する。
畳み込み型ニューラルネットワークを用いた物体検出装置を用いて,テキサス沿岸の植民地性営巣島でよく見られる16種類の水鳥を検出できることを示す。
論文 参考訳(メタデータ) (2022-10-10T17:37:56Z) - Zoo-Tuning: Adaptive Transfer from a Zoo of Models [82.9120546160422]
Zoo-Tuningは、事前訓練されたモデルのパラメータをターゲットタスクに適応的に転送することを学ぶ。
我々は、強化学習、画像分類、顔のランドマーク検出など、様々なタスクに対するアプローチを評価した。
論文 参考訳(メタデータ) (2021-06-29T14:09:45Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
本稿では, 深層ニューラルネットワークを用いたジャガイモの空中画像解析手法を提案する。
主な目的は、植物レベルでの健康作物とストレス作物の自動空間認識を実証することである。
実験により、フィールド画像中の健康植物とストレス植物を識別し、平均Dice係数0.74を達成できることを示した。
論文 参考訳(メタデータ) (2021-06-14T21:57:40Z) - Deep learning with self-supervision and uncertainty regularization to
count fish in underwater images [28.261323753321328]
効果的な保全活動には、効果的な人口監視が必要です。
画像サンプリングによる人口のモニタリングにより、データ収集は安価で広く、侵入性が低くなっている。
このようなデータから動物を数えることは、特に騒々しい画像に密に詰め込まれた場合、困難です。
深層学習は多くのコンピュータビジョンタスクの最先端の手法であるが、動物を数えるためにはまだ十分に研究されていない。
論文 参考訳(メタデータ) (2021-04-30T13:02:19Z) - Unifying data for fine-grained visual species classification [15.14767769034929]
465種にまたがる2.9M画像に基づいて訓練した,初期の深部畳み込みニューラルネットワークモデルを提案する。
長期的な目標は、科学者が種数と人口の健康状態のほぼリアルタイムでの分析から、保護的なレコメンデーションを行うことである。
論文 参考訳(メタデータ) (2020-09-24T01:04:18Z) - Transferring Dense Pose to Proximal Animal Classes [83.84439508978126]
より一般的な対象検出器やセグメンタなどと同様に、密集したポーズ認識に存在する知識を、他のクラスにおける密集したポーズ認識の問題に移すことが可能であることを示す。
我々は、人間と幾何学的に整合した新しい動物のためのDensePoseモデルを確立することでこれを行う。
また、クラスチンパンジーにDensePoseの方法でラベル付けされた2つのベンチマークデータセットを導入し、アプローチを評価するためにそれらを使用します。
論文 参考訳(メタデータ) (2020-02-28T21:43:53Z) - Deformation-aware Unpaired Image Translation for Pose Estimation on
Laboratory Animals [56.65062746564091]
我々は,神経回路が行動をどのようにオーケストレーションするかを研究するために,手動による監督を使わずに,神経科学モデル生物のポーズを捉えることを目的としている。
我々の重要な貢献は、未完成の画像翻訳フレームワークにおける外観、形状、ポーズの明示的で独立したモデリングである。
ショウジョウバエ(ハエ)、線虫(線虫)、ダニオ・レリオ(ゼブラフィッシュ)のポーズ推定精度の向上を実証した。
論文 参考訳(メタデータ) (2020-01-23T15:34:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。