論文の概要: Decongestion by Representation: Learning to Improve Economic Welfare in Marketplaces
- arxiv url: http://arxiv.org/abs/2306.10606v2
- Date: Wed, 3 Apr 2024 12:22:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 23:37:29.419998
- Title: Decongestion by Representation: Learning to Improve Economic Welfare in Marketplaces
- Title(参考訳): 表象による混雑緩和--市場における経済福祉改善の学習
- Authors: Omer Nahum, Gali Noti, David Parkes, Nir Rosenfeld,
- Abstract要約: 現代のオンラインマーケットプレースでは、価格は通常、売り手によって分散された方法で設定され、アイテムに関する情報は必然的に部分的である。
プラットフォームのパワーは、デフォルトでユーザに提示されるアイテムに関する情報のサブセットである表現を制御することに限定されます。
このことは、プラットフォームが混雑を減らし、社会的福祉を改善する表現を学習しようとする、代理表現による混雑の現在の研究を動機付けている。
- 参考スコア(独自算出の注目度): 14.105727639288316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Congestion is a common failure mode of markets, where consumers compete inefficiently on the same subset of goods (e.g., chasing the same small set of properties on a vacation rental platform). The typical economic story is that prices decongest by balancing supply and demand. But in modern online marketplaces, prices are typically set in a decentralized way by sellers, and the information about items is inevitably partial. The power of a platform is limited to controlling representations -- the subset of information about items presented by default to users. This motivates the present study of decongestion by representation, where a platform seeks to learn representations that reduce congestion and thus improve social welfare. The technical challenge is twofold: relying only on revealed preferences from the choices of consumers, rather than true preferences; and the combinatorial problem associated with representations that determine the features to reveal in the default view. We tackle both challenges by proposing a differentiable proxy of welfare that can be trained end-to-end on consumer choice data. We develop sufficient conditions for when decongestion promotes welfare, and present the results of extensive experiments on both synthetic and real data that demonstrate the utility of our approach.
- Abstract(参考訳): 混雑は、消費者が同じ商品のサブセットで非効率に競争する市場において共通の失敗モードである(例えば、休暇のレンタルプラットフォームで同じ小さな資産を追求する)。
典型的な経済的な話は、供給と需要のバランスをとることで価格が下落するということである。
しかし、現代のオンラインマーケットプレースでは、価格は通常、売り手によって分散された方法で設定され、アイテムに関する情報は必然的に部分的である。
プラットフォームのパワーは、デフォルトでユーザに提示されるアイテムに関する情報のサブセットである表現を制御することに限定されます。
プラットフォームは、混雑を減らし、社会的福祉を改善する表現を学習しようとする。
技術的な課題は2つある:真の選好ではなく、消費者の選択から明らかな選好にのみ依存すること。
我々は、消費者選択データに基づいてエンドツーエンドにトレーニングできる福祉の差別化可能なプロキシを提案することによって、両方の課題に取り組む。
我々は, 脱便が福祉を促進するための十分な条件を策定し, 提案手法の有用性を示す合成データと実データの両方に関する広範な実験結果を示す。
関連論文リスト
- A Bargaining-based Approach for Feature Trading in Vertical Federated
Learning [54.51890573369637]
本稿では,垂直的フェデレートラーニング(VFL)において,経済的に効率的な取引を促進するための交渉型特徴取引手法を提案する。
当社のモデルでは,収益ベース最適化の目的を考慮し,パフォーマンスゲインベースの価格設定を取り入れている。
論文 参考訳(メタデータ) (2024-02-23T10:21:07Z) - A Causal Perspective on Loan Pricing: Investigating the Impacts of
Selection Bias on Identifying Bid-Response Functions [1.0937531920233807]
我々は、因果推論の問題として価格を装い、選択バイアスの効果を理解するための一歩を踏み出した。
本研究では,ベルギーにおけるローンローン申請に関する半合成データセットにおいて,選択バイアスのレベルをシミュレートした。
我々は、因果機械学習による最先端の手法を実装し、価格データの選択バイアスを克服する能力を示す。
論文 参考訳(メタデータ) (2023-09-07T14:14:30Z) - Improved Bayes Risk Can Yield Reduced Social Welfare Under Competition [99.7047087527422]
本研究は,機械学習のスケーリングトレンドの振る舞いを根本的に変化させることを実証する。
データ表現品質の改善により、ユーザ間での全体的な予測精度が低下する、多くの設定が見つかる。
概念レベルでは,各モデルプロジェクタのスケーリング傾向が,社会福祉の下流改善に寄与する必要はないことが示唆された。
論文 参考訳(メタデータ) (2023-06-26T13:06:34Z) - No Bidding, No Regret: Pairwise-Feedback Mechanisms for Digital Goods
and Data Auctions [14.87136964827431]
本研究は, 一般的な繰り返しオークション設定に対処する新しいメカニズムを提案する。
メカニズムの新規性は、入札者から情報を引き出すためにペアワイズ比較を使用することにある。
ヒューマンファクターに焦点が当てられていることは、よりヒューマン・アウェアで効率的なメカニズム設計の発展に寄与する。
論文 参考訳(メタデータ) (2023-06-02T18:29:07Z) - Competition, Alignment, and Equilibria in Digital Marketplaces [97.03797129675951]
プラットフォームアクションがバンディットアルゴリズムであり,両プラットフォームがユーザ参加を競うデュオポリー市場について検討する。
私たちの主な発見は、この市場における競争は、市場の結果をユーザーユーティリティと完全に一致させるものではないということです。
論文 参考訳(メタデータ) (2022-08-30T17:43:58Z) - Estimating Causal Effects of Multi-Aspect Online Reviews with
Multi-Modal Proxies [24.246450472404614]
本研究は,ユーザ生成オンラインレビューの微粒化に対する因果関係を実証的に検証する。
レストランの食品・サービスなど、さまざまな側面について検討する。
論文 参考訳(メタデータ) (2021-12-19T22:29:02Z) - Dual Side Deep Context-aware Modulation for Social Recommendation [50.59008227281762]
社会的関係と協調関係をモデル化する新しいグラフニューラルネットワークを提案する。
高次関係の上に、友人の情報とアイテムのアトラクションを捉えるために、双方向のコンテキスト認識変調を導入する。
論文 参考訳(メタデータ) (2021-03-16T11:08:30Z) - Fairness, Welfare, and Equity in Personalized Pricing [88.9134799076718]
顧客特性に基づくパーソナライズ価格における公平性、福祉、株式の配慮の相互作用について検討する。
選択ワクチンの価格補助金と、マイクロクレジットの下流結果に対するパーソナライズされた利率の影響の2つの設定において、パーソナライズされた価格の潜在的利点を示す。
論文 参考訳(メタデータ) (2020-12-21T01:01:56Z) - Supercharging Imbalanced Data Learning With Energy-based Contrastive
Representation Transfer [72.5190560787569]
コンピュータビジョンにおいて、長い尾のデータセットからの学習は、特に自然画像データセットの繰り返しのテーマである。
本稿では,データ生成機構がラベル条件と特徴分布の間で不変であるメタ分散シナリオを提案する。
これにより、因果データインフレーションの手順を利用してマイノリティクラスの表現を拡大できる。
論文 参考訳(メタデータ) (2020-11-25T00:13:11Z) - Learning Smooth and Fair Representations [24.305894478899948]
本稿では,特徴量と感性属性との相関関係を,公平な表現空間にマッピングすることで事前に除去する能力について検討する。
実験により,表現分布の平滑化は公平性証明の一般化保証を提供することがわかった。
表現分布の平滑化は、表現学習における最先端手法と比較して下流タスクの精度を低下させるものではない。
論文 参考訳(メタデータ) (2020-06-15T21:51:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。