High-Efficiency Neural Video Compression via Hierarchical Predictive Learning
- URL: http://arxiv.org/abs/2410.02598v1
- Date: Thu, 3 Oct 2024 15:40:58 GMT
- Title: High-Efficiency Neural Video Compression via Hierarchical Predictive Learning
- Authors: Ming Lu, Zhihao Duan, Wuyang Cong, Dandan Ding, Fengqing Zhu, Zhan Ma,
- Abstract summary: Enhanced Deep Hierarchical Video Compression-DHVC 2.0- introduces superior compression performance and impressive complexity efficiency.
Uses hierarchical predictive coding to transform each video frame into multiscale representations.
Supports transmission-friendly progressive decoding, making it particularly advantageous for networked video applications in the presence of packet loss.
- Score: 27.41398149573729
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The enhanced Deep Hierarchical Video Compression-DHVC 2.0-has been introduced. This single-model neural video codec operates across a broad range of bitrates, delivering not only superior compression performance to representative methods but also impressive complexity efficiency, enabling real-time processing with a significantly smaller memory footprint on standard GPUs. These remarkable advancements stem from the use of hierarchical predictive coding. Each video frame is uniformly transformed into multiscale representations through hierarchical variational autoencoders. For a specific scale's feature representation of a frame, its corresponding latent residual variables are generated by referencing lower-scale spatial features from the same frame and then conditionally entropy-encoded using a probabilistic model whose parameters are predicted using same-scale temporal reference from previous frames and lower-scale spatial reference of the current frame. This feature-space processing operates from the lowest to the highest scale of each frame, completely eliminating the need for the complexity-intensive motion estimation and compensation techniques that have been standard in video codecs for decades. The hierarchical approach facilitates parallel processing, accelerating both encoding and decoding, and supports transmission-friendly progressive decoding, making it particularly advantageous for networked video applications in the presence of packet loss. Source codes will be made available.
Related papers
- Accelerating Learned Video Compression via Low-Resolution Representation Learning [18.399027308582596]
We introduce an efficiency-optimized framework for learned video compression that focuses on low-resolution representation learning.
Our method achieves performance levels on par with the low-decay P configuration of the H.266 reference software VTM.
arXiv Detail & Related papers (2024-07-23T12:02:57Z) - Boosting Neural Representations for Videos with a Conditional Decoder [28.073607937396552]
Implicit neural representations (INRs) have emerged as a promising approach for video storage and processing.
This paper introduces a universal boosting framework for current implicit video representation approaches.
arXiv Detail & Related papers (2024-02-28T08:32:19Z) - VNVC: A Versatile Neural Video Coding Framework for Efficient
Human-Machine Vision [59.632286735304156]
It is more efficient to enhance/analyze the coded representations directly without decoding them into pixels.
We propose a versatile neural video coding (VNVC) framework, which targets learning compact representations to support both reconstruction and direct enhancement/analysis.
arXiv Detail & Related papers (2023-06-19T03:04:57Z) - FFNeRV: Flow-Guided Frame-Wise Neural Representations for Videos [5.958701846880935]
We propose FFNeRV, a novel method for incorporating flow information into frame-wise representations to exploit the temporal redundancy across the frames in videos.
With model compression techniques, FFNeRV outperforms widely-used standard video codecs (H.264 and HEVC) and performs on par with state-of-the-art video compression algorithms.
arXiv Detail & Related papers (2022-12-23T12:51:42Z) - A Coding Framework and Benchmark towards Low-Bitrate Video Understanding [63.05385140193666]
We propose a traditional-neural mixed coding framework that takes advantage of both traditional codecs and neural networks (NNs)
The framework is optimized by ensuring that a transportation-efficient semantic representation of the video is preserved.
We build a low-bitrate video understanding benchmark with three downstream tasks on eight datasets, demonstrating the notable superiority of our approach.
arXiv Detail & Related papers (2022-02-06T16:29:15Z) - Conditional Entropy Coding for Efficient Video Compression [82.35389813794372]
We propose a very simple and efficient video compression framework that only focuses on modeling the conditional entropy between frames.
We first show that a simple architecture modeling the entropy between the image latent codes is as competitive as other neural video compression works and video codecs.
We then propose a novel internal learning extension on top of this architecture that brings an additional 10% savings without trading off decoding speed.
arXiv Detail & Related papers (2020-08-20T20:01:59Z) - Learning for Video Compression with Recurrent Auto-Encoder and Recurrent
Probability Model [164.7489982837475]
This paper proposes a Recurrent Learned Video Compression (RLVC) approach with the Recurrent Auto-Encoder (RAE) and Recurrent Probability Model ( RPM)
The RAE employs recurrent cells in both the encoder and decoder to exploit the temporal correlation among video frames.
Our approach achieves the state-of-the-art learned video compression performance in terms of both PSNR and MS-SSIM.
arXiv Detail & Related papers (2020-06-24T08:46:33Z) - Variable Rate Video Compression using a Hybrid Recurrent Convolutional
Learning Framework [1.9290392443571382]
This paper presents PredEncoder, a hybrid video compression framework based on the concept of predictive auto-encoding.
A variable-rate block encoding scheme has been proposed in the paper that leads to remarkably high quality to bit-rate ratios.
arXiv Detail & Related papers (2020-04-08T20:49:25Z) - Content Adaptive and Error Propagation Aware Deep Video Compression [110.31693187153084]
We propose a content adaptive and error propagation aware video compression system.
Our method employs a joint training strategy by considering the compression performance of multiple consecutive frames instead of a single frame.
Instead of using the hand-crafted coding modes in the traditional compression systems, we design an online encoder updating scheme in our system.
arXiv Detail & Related papers (2020-03-25T09:04:24Z) - An Emerging Coding Paradigm VCM: A Scalable Coding Approach Beyond
Feature and Signal [99.49099501559652]
Video Coding for Machine (VCM) aims to bridge the gap between visual feature compression and classical video coding.
We employ a conditional deep generation network to reconstruct video frames with the guidance of learned motion pattern.
By learning to extract sparse motion pattern via a predictive model, the network elegantly leverages the feature representation to generate the appearance of to-be-coded frames.
arXiv Detail & Related papers (2020-01-09T14:18:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.