Optimal Control Strategies for Parameter Estimation of Quantum Systems
- URL: http://arxiv.org/abs/2306.10735v1
- Date: Mon, 19 Jun 2023 07:09:05 GMT
- Title: Optimal Control Strategies for Parameter Estimation of Quantum Systems
- Authors: Quentin Ansel, Etienne Dionis, Dominique Sugny
- Abstract summary: We describe the similarities, differences, and advantages of two approaches to optimal control theory.
We show that the control mechanisms are generally equivalent, except when the decoherence is not negligible.
In this latter case, the precision achieved with selective controls can be several orders of magnitude better than that given by the QFI.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimal control theory is an effective tool to improve parameter estimation
of quantum systems. Different methods can be employed for the design of the
control protocol. They can be based either on Quantum Fischer Information (QFI)
maximization or selective control processes. We describe the similarities,
differences, and advantages of these two approaches. A detailed comparative
study is presented for estimating the parameters of a spin$-\tfrac{1}{2}$
system coupled to a bosonic bath. We show that the control mechanisms are
generally equivalent, except when the decoherence is not negligible or when the
experimental setup is not adapted to the QFI. In this latter case, the
precision achieved with selective controls can be several orders of magnitude
better than that given by the QFI.
Related papers
- Quantum control by the environment: Turing uncomputability, Optimization over Stiefel manifolds, Reachable sets, and Incoherent GRAPE [56.47577824219207]
In many practical situations, the controlled quantum systems are open, interacting with the environment.
In this note, we briefly review some results on control of open quantum systems using environment as a resource.
arXiv Detail & Related papers (2024-03-20T10:09:13Z) - Real-time parameter estimation for two-qubit systems based on hybrid
control [5.026348938624301]
We consider the real-time parameter estimation problem for a ZZ-coupled system composed of two qubits in the presence of spontaneous emission.
We first propose two different control schemes, where the first one is feedback control based on quantum-jump detection, and the second one is hybrid control combining Markovian feedback and Hamiltonian control.
arXiv Detail & Related papers (2024-01-07T15:03:46Z) - Identifiability and Characterization of Transmon Qutrits Through Bayesian Experimental Design [0.0]
We present an online, Bayesian approach for quantum characterization of qutrit systems.
Unlike most characterization protocols that provide point-estimates of the parameters, the proposed approach is able to estimate their probability distribution.
We provide a mathematical proof of the theoretical identifiability of the model parameters and present conditions on the quantum state under which the parameters are identifiable.
arXiv Detail & Related papers (2023-12-15T22:02:54Z) - Designing optimal protocols in Bayesian quantum parameter estimation with higher-order operations [0.0]
A major task in quantum sensing is to design the optimal protocol, i.e., the most precise one.
Here, we focus on the single-shot Bayesian setting, where the goal is to find the optimal initial state of the probe.
We leverage the formalism of higher-order operations to develop a method that finds a protocol that is close to the optimal one with arbitrary precision.
arXiv Detail & Related papers (2023-11-02T18:00:36Z) - Optimal State Manipulation for a Two-Qubit System Driven by Coherent and
Incoherent Controls [77.34726150561087]
State preparation is important for optimal control of two-qubit quantum systems.
We exploit two physically different coherent control and optimize the Hilbert-Schmidt target density matrices.
arXiv Detail & Related papers (2023-04-03T10:22:35Z) - On optimization of coherent and incoherent controls for two-level
quantum systems [77.34726150561087]
This article considers some control problems for closed and open two-level quantum systems.
The closed system's dynamics is governed by the Schr"odinger equation with coherent control.
The open system's dynamics is governed by the Gorini-Kossakowski-Sudarshan-Lindblad master equation.
arXiv Detail & Related papers (2022-05-05T09:08:03Z) - Optimal solutions to quantum annealing using two independent control
functions [0.0]
We show that an optimal solution consists of both controls tuned at their upper bound for the whole evolution time.
We propose the use of a quantum optimal control technique adapted to limit the amplitude of the controls.
We show that the scheme with two-control functions yields a higher fidelity than the other schemes for the same evolution time.
arXiv Detail & Related papers (2021-10-26T16:54:17Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
We study partially controllable linear dynamical systems specified by an underlying sparsity pattern.
Our results characterize those state variables which are irrelevant for optimal control.
arXiv Detail & Related papers (2021-10-12T16:41:47Z) - Numerical estimation of reachable and controllability sets for a
two-level open quantum system driven by coherent and incoherent controls [77.34726150561087]
The article considers a two-level open quantum system governed by the Gorini--Kossakowski--Lindblad--Sudarshan master equation.
The system is analyzed using Bloch parametrization of the system's density matrix.
arXiv Detail & Related papers (2021-06-18T14:23:29Z) - Generalizable control for multiparameter quantum metrology [20.506414877440644]
We study the generalizability of optimal control, namely, optimal controls that can be systematically updated across a range of parameters with minimal cost.
We argue that the generalization of reinforcement learning is through a mechanism similar to the analytical scheme.
arXiv Detail & Related papers (2020-12-24T18:04:46Z) - Time-local optimal control for parameter estimation in the Gaussian
regime [68.8204255655161]
instantaneous control unitaries may be used to mitigate the decrease of information caused by an open dynamics.
A possible, locally optimal (in time) choice for such controls is the one that maximises the time-derivative of the quantum Fisher information.
arXiv Detail & Related papers (2020-01-10T16:24:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.