Designing optimal protocols in Bayesian quantum parameter estimation with higher-order operations
- URL: http://arxiv.org/abs/2311.01513v2
- Date: Fri, 21 Jun 2024 15:45:53 GMT
- Title: Designing optimal protocols in Bayesian quantum parameter estimation with higher-order operations
- Authors: Jessica Bavaresco, Patryk Lipka-Bartosik, Pavel Sekatski, Mohammad Mehboudi,
- Abstract summary: A major task in quantum sensing is to design the optimal protocol, i.e., the most precise one.
Here, we focus on the single-shot Bayesian setting, where the goal is to find the optimal initial state of the probe.
We leverage the formalism of higher-order operations to develop a method that finds a protocol that is close to the optimal one with arbitrary precision.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using quantum systems as sensors or probes has been shown to greatly improve the precision of parameter estimation by exploiting unique quantum features such as entanglement. A major task in quantum sensing is to design the optimal protocol, i.e., the most precise one. It has been solved for some specific instances of the problem, but in general even numerical methods are not known. Here, we focus on the single-shot Bayesian setting, where the goal is to find the optimal initial state of the probe (which can be entangled with an auxiliary system), the optimal measurement, and the optimal estimator function. We leverage the formalism of higher-order operations to develop a method based on semidefinite programming that finds a protocol that is close to the optimal one with arbitrary precision. Crucially, our method is not restricted to any specific quantum evolution, cost function or prior distribution, and thus can be applied to any estimation problem. Moreover, it can be applied to both single or multiparameter estimation tasks. We demonstrate our method with three examples, consisting of unitary phase estimation, thermometry in a bosonic bath, and multiparameter estimation of an SU(2) transformation. Exploiting our methods, we extend several results from the literature. For example, in the thermometry case, we find the optimal protocol at any finite time and quantify the usefulness of entanglement.
Related papers
- Optimal Multiparameter Metrology: The Quantum Compass Solution [0.0]
We study optimal quantum sensing of multiple physical parameters using repeated measurements.
We identify the combination of input states and measurements that satisfies both optimality criteria.
We refer to the resulting optimal sensor as a quantum compass' solution.
arXiv Detail & Related papers (2024-04-22T14:03:46Z) - QestOptPOVM: An iterative algorithm to find optimal measurements for quantum parameter estimation [17.305295658536828]
We introduce an algorithm, termed QestPOVM, designed to directly identify optimal positive operator-Opt measure (POVM)
Through rigorous testing on several examples for multiple copies of qubit states (up to six copies), we demonstrate the efficiency and accuracy of our proposed algorithm.
Our algorithm functions as a tool for elucidating the explicit forms of optimal POVMs, thereby enhancing our understanding of quantum parameter estimation methodologies.
arXiv Detail & Related papers (2024-03-29T11:46:09Z) - Finding the optimal probe state for multiparameter quantum metrology
using conic programming [61.98670278625053]
We present a conic programming framework that allows us to determine the optimal probe state for the corresponding precision bounds.
We also apply our theory to analyze the canonical field sensing problem using entangled quantum probe states.
arXiv Detail & Related papers (2024-01-11T12:47:29Z) - Optimal protocols for quantum metrology with noisy measurements [0.0]
We show that a quantum preprocessing-optimized parameter determines the ultimate precision limit for quantum sensors under measurement noise.
Applications to noisy quantum states and thermometry are presented, as well as explicit circuit constructions of optimal controls.
arXiv Detail & Related papers (2022-10-20T16:37:47Z) - Tight Cram\'{e}r-Rao type bounds for multiparameter quantum metrology
through conic programming [61.98670278625053]
It is paramount to have practical measurement strategies that can estimate incompatible parameters with best precisions possible.
Here, we give a concrete way to find uncorrelated measurement strategies with optimal precisions.
We show numerically that there is a strict gap between the previous efficiently computable bounds and the ultimate precision bound.
arXiv Detail & Related papers (2022-09-12T13:06:48Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Experimental Bayesian calibration of trapped ion entangling operations [48.43720700248091]
We develop and characterize an efficient calibration protocol to automatically estimate and adjust experimental parameters of the widely used Molmer-Sorensen entangling gate operation.
We experimentally demonstrate a median gate infidelity of $1.3(1)cdot10-3$, requiring only $1200pm500$ experimental cycles, while completing the entire gate calibration procedure in less than one minute.
arXiv Detail & Related papers (2021-12-02T16:59:00Z) - Protocols for estimating multiple functions with quantum sensor
networks: geometry and performance [1.6515040019372476]
We consider the problem of estimating multiple analytic functions of a set of local parameters via qubit sensors in a quantum sensor network.
We develop a new optimized sequential protocol for measuring such functions.
arXiv Detail & Related papers (2021-04-19T18:05:04Z) - Quantum probes for universal gravity corrections [62.997667081978825]
We review the concept of minimum length and show how it induces a perturbative term appearing in the Hamiltonian of any quantum system.
We evaluate the Quantum Fisher Information in order to find the ultimate bounds to the precision of any estimation procedure.
Our results show that quantum probes are convenient resources, providing potential enhancement in precision.
arXiv Detail & Related papers (2020-02-13T19:35:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.