ExpPoint-MAE: Better interpretability and performance for self-supervised point cloud transformers
- URL: http://arxiv.org/abs/2306.10798v3
- Date: Wed, 10 Apr 2024 11:42:22 GMT
- Title: ExpPoint-MAE: Better interpretability and performance for self-supervised point cloud transformers
- Authors: Ioannis Romanelis, Vlassis Fotis, Konstantinos Moustakas, Adrian Munteanu,
- Abstract summary: We evaluate the effectiveness of Masked Autoencoding as a pretraining scheme, and explore Momentum Contrast as an alternative.
We observe that the transformer learns to attend to semantically meaningful regions, indicating that pretraining leads to a better understanding of the underlying geometry.
- Score: 7.725095281624494
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we delve into the properties of transformers, attained through self-supervision, in the point cloud domain. Specifically, we evaluate the effectiveness of Masked Autoencoding as a pretraining scheme, and explore Momentum Contrast as an alternative. In our study we investigate the impact of data quantity on the learned features, and uncover similarities in the transformer's behavior across domains. Through comprehensive visualiations, we observe that the transformer learns to attend to semantically meaningful regions, indicating that pretraining leads to a better understanding of the underlying geometry. Moreover, we examine the finetuning process and its effect on the learned representations. Based on that, we devise an unfreezing strategy which consistently outperforms our baseline without introducing any other modifications to the model or the training pipeline, and achieve state-of-the-art results in the classification task among transformer models.
Related papers
- Unveil Benign Overfitting for Transformer in Vision: Training Dynamics, Convergence, and Generalization [88.5582111768376]
We study the optimization of a Transformer composed of a self-attention layer with softmax followed by a fully connected layer under gradient descent on a certain data distribution model.
Our results establish a sharp condition that can distinguish between the small test error phase and the large test error regime, based on the signal-to-noise ratio in the data model.
arXiv Detail & Related papers (2024-09-28T13:24:11Z) - Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis [63.66763657191476]
We show that efficient numerical training and inference algorithms as low-rank computation have impressive performance for learning Transformer-based adaption.
We analyze how magnitude-based models affect generalization while improving adaption.
We conclude that proper magnitude-based has a slight on the testing performance.
arXiv Detail & Related papers (2024-06-24T23:00:58Z) - Affine transformation estimation improves visual self-supervised
learning [4.40560654491339]
We show that adding a module to constrain the representations to be predictive of an affine transformation improves the performance and efficiency of the learning process.
We perform experiments in various modern self-supervised models and see a performance improvement in all cases.
arXiv Detail & Related papers (2024-02-14T10:32:58Z) - Enhancing cross-domain detection: adaptive class-aware contrastive
transformer [15.666766743738531]
Insufficient labels in the target domain exacerbate issues of class imbalance and model performance degradation.
We propose a class-aware cross domain detection transformer based on the adversarial learning and mean-teacher framework.
arXiv Detail & Related papers (2024-01-24T07:11:05Z) - Emergent Agentic Transformer from Chain of Hindsight Experience [96.56164427726203]
We show that a simple transformer-based model performs competitively with both temporal-difference and imitation-learning-based approaches.
This is the first time that a simple transformer-based model performs competitively with both temporal-difference and imitation-learning-based approaches.
arXiv Detail & Related papers (2023-05-26T00:43:02Z) - Image Deblurring by Exploring In-depth Properties of Transformer [86.7039249037193]
We leverage deep features extracted from a pretrained vision transformer (ViT) to encourage recovered images to be sharp without sacrificing the performance measured by the quantitative metrics.
By comparing the transformer features between recovered image and target one, the pretrained transformer provides high-resolution blur-sensitive semantic information.
One regards the features as vectors and computes the discrepancy between representations extracted from recovered image and target one in Euclidean space.
arXiv Detail & Related papers (2023-03-24T14:14:25Z) - XAI for Transformers: Better Explanations through Conservative
Propagation [60.67748036747221]
We show that the gradient in a Transformer reflects the function only locally, and thus fails to reliably identify the contribution of input features to the prediction.
Our proposal can be seen as a proper extension of the well-established LRP method to Transformers.
arXiv Detail & Related papers (2022-02-15T10:47:11Z) - Efficient Vision Transformers via Fine-Grained Manifold Distillation [96.50513363752836]
Vision transformer architectures have shown extraordinary performance on many computer vision tasks.
Although the network performance is boosted, transformers are often required more computational resources.
We propose to excavate useful information from the teacher transformer through the relationship between images and the divided patches.
arXiv Detail & Related papers (2021-07-03T08:28:34Z) - Point Cloud Learning with Transformer [2.3204178451683264]
We introduce a novel framework, called Multi-level Multi-scale Point Transformer (MLMSPT)
Specifically, a point pyramid transformer is investigated to model features with diverse resolutions or scales.
A multi-level transformer module is designed to aggregate contextual information from different levels of each scale and enhance their interactions.
arXiv Detail & Related papers (2021-04-28T08:39:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.