Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis
- URL: http://arxiv.org/abs/2406.17167v1
- Date: Mon, 24 Jun 2024 23:00:58 GMT
- Title: Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis
- Authors: Hongkang Li, Meng Wang, Shuai Zhang, Sijia Liu, Pin-Yu Chen,
- Abstract summary: We show that efficient numerical training and inference algorithms as low-rank computation have impressive performance for learning Transformer-based adaption.
We analyze how magnitude-based models affect generalization while improving adaption.
We conclude that proper magnitude-based has a slight on the testing performance.
- Score: 63.66763657191476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient training and inference algorithms, such as low-rank adaption and model pruning, have shown impressive performance for learning Transformer-based large foundation models. However, due to the technical challenges of the non-convex optimization caused by the complicated architecture of Transformers, the theoretical study of why these methods can be applied to learn Transformers is mostly elusive. To the best of our knowledge, this paper shows the first theoretical analysis of the property of low-rank and sparsity of one-layer Transformers by characterizing the trained model after convergence using stochastic gradient descent. By focusing on a data model based on label-relevant and label-irrelevant patterns, we quantify that the gradient updates of trainable parameters are low-rank, which depends on the number of label-relevant patterns. We also analyze how model pruning affects the generalization while improving computation efficiency and conclude that proper magnitude-based pruning has a slight effect on the testing performance. We implement numerical experiments to support our findings.
Related papers
- One-Layer Transformer Provably Learns One-Nearest Neighbor In Context [48.4979348643494]
We study the capability of one-layer transformers learning the one-nearest neighbor rule.
A single softmax attention layer can successfully learn to behave like a one-nearest neighbor.
arXiv Detail & Related papers (2024-11-16T16:12:42Z) - Can Looped Transformers Learn to Implement Multi-step Gradient Descent for In-context Learning? [69.4145579827826]
We show a fast flow on the regression loss despite the gradient non-ity algorithms for our convergence landscape.
This is the first theoretical analysis for multi-layer Transformer in this setting.
arXiv Detail & Related papers (2024-10-10T18:29:05Z) - On the Optimization and Generalization of Two-layer Transformers with Sign Gradient Descent [51.50999191584981]
Sign Gradient Descent (SignGD) serves as an effective surrogate for Adam.
We study how SignGD optimize a two-layer transformer on a noisy dataset.
We find that the poor generalization of SignGD is not solely due to data noise, suggesting that both SignGD and Adam requires high-quality data for real-world tasks.
arXiv Detail & Related papers (2024-10-07T09:36:43Z) - Unveil Benign Overfitting for Transformer in Vision: Training Dynamics, Convergence, and Generalization [88.5582111768376]
We study the optimization of a Transformer composed of a self-attention layer with softmax followed by a fully connected layer under gradient descent on a certain data distribution model.
Our results establish a sharp condition that can distinguish between the small test error phase and the large test error regime, based on the signal-to-noise ratio in the data model.
arXiv Detail & Related papers (2024-09-28T13:24:11Z) - Uncovering mesa-optimization algorithms in Transformers [61.06055590704677]
Some autoregressive models can learn as an input sequence is processed, without undergoing any parameter changes, and without being explicitly trained to do so.
We show that standard next-token prediction error minimization gives rise to a subsidiary learning algorithm that adjusts the model as new inputs are revealed.
Our findings explain in-context learning as a product of autoregressive loss minimization and inform the design of new optimization-based Transformer layers.
arXiv Detail & Related papers (2023-09-11T22:42:50Z) - Transformers learn in-context by gradient descent [58.24152335931036]
Training Transformers on auto-regressive objectives is closely related to gradient-based meta-learning formulations.
We show how trained Transformers become mesa-optimizers i.e. learn models by gradient descent in their forward pass.
arXiv Detail & Related papers (2022-12-15T09:21:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.