Online Dynamic Submodular Optimization
- URL: http://arxiv.org/abs/2306.10835v3
- Date: Thu, 2 May 2024 11:13:55 GMT
- Title: Online Dynamic Submodular Optimization
- Authors: Antoine Lesage-Landry, Julien Pallage,
- Abstract summary: We propose new algorithms with provable performance for online binary optimization.
We numerically test our algorithms in two power system applications: fast-timescale demand response and real-time distribution network reconfiguration.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose new algorithms with provable performance for online binary optimization subject to general constraints and in dynamic settings. We consider the subset of problems in which the objective function is submodular. We propose the online submodular greedy algorithm (OSGA) which solves to optimality an approximation of the previous round loss function to avoid the NP-hardness of the original problem. We extend OSGA to a generic approximation function. We show that OSGA has a dynamic regret bound similar to the tightest bounds in online convex optimization with respect to the time horizon and the cumulative round optimum variation. For instances where no approximation exists or a computationally simpler implementation is desired, we design the online submodular projected gradient descent (OSPGD) by leveraging the Lova\'sz extension. We obtain a regret bound that is akin to the conventional online gradient descent (OGD). Finally, we numerically test our algorithms in two power system applications: fast-timescale demand response and real-time distribution network reconfiguration.
Related papers
- Gradient-Variation Online Learning under Generalized Smoothness [56.38427425920781]
gradient-variation online learning aims to achieve regret guarantees that scale with variations in gradients of online functions.
Recent efforts in neural network optimization suggest a generalized smoothness condition, allowing smoothness to correlate with gradient norms.
We provide the applications for fast-rate convergence in games and extended adversarial optimization.
arXiv Detail & Related papers (2024-08-17T02:22:08Z) - Adaptive and Optimal Second-order Optimistic Methods for Minimax Optimization [32.939120407900035]
Our algorithms feature a simple update rule that requires solving only one linear system per iteration.
We also evaluate the practical performance of our algorithm by comparing it to existing second-order algorithms for minimax optimization.
arXiv Detail & Related papers (2024-06-04T06:56:41Z) - From Linear to Linearizable Optimization: A Novel Framework with Applications to Stationary and Non-stationary DR-submodular Optimization [33.38582292895673]
This paper introduces the notion of concavity and DR-submodularity in various settings, including monotone non-linear and DR-submodularity.
A general meta-algorithmm converts linear/quadratic into ones that optimize upper-linear/quadratizable functions.
arXiv Detail & Related papers (2024-04-27T06:19:30Z) - Ordering for Non-Replacement SGD [7.11967773739707]
We seek to find an ordering that can improve the convergence rates for the non-replacement form of the algorithm.
We develop optimal orderings for constant and decreasing step sizes for strongly convex and convex functions.
In addition, we are able to combine the ordering with mini-batch and further apply it to more complex neural networks.
arXiv Detail & Related papers (2023-06-28T00:46:58Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
We develop an adaptive inexact Newton method for equality-constrained nonlinear, nonIBS optimization problems.
We demonstrate the superior performance of our method on benchmark nonlinear problems, constrained logistic regression with data from LVM, and a PDE-constrained problem.
arXiv Detail & Related papers (2023-05-28T06:33:37Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Adaptivity and Non-stationarity: Problem-dependent Dynamic Regret for Online Convex Optimization [70.4342220499858]
We introduce novel online algorithms that can exploit smoothness and replace the dependence on $T$ in dynamic regret with problem-dependent quantities.
Our results are adaptive to the intrinsic difficulty of the problem, since the bounds are tighter than existing results for easy problems and safeguard the same rate in the worst case.
arXiv Detail & Related papers (2021-12-29T02:42:59Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - A Dynamical View on Optimization Algorithms of Overparameterized Neural
Networks [23.038631072178735]
We consider a broad class of optimization algorithms that are commonly used in practice.
As a consequence, we can leverage the convergence behavior of neural networks.
We believe our approach can also be extended to other optimization algorithms and network theory.
arXiv Detail & Related papers (2020-10-25T17:10:22Z) - GTAdam: Gradient Tracking with Adaptive Momentum for Distributed Online
Optimization [4.103281325880475]
This paper deals with a network of computing agents aiming to solve an online optimization problem in a distributed fashion, by means of local computation and communication, without any central coordinator.
We propose the gradient tracking with adaptive momentum estimation (GTAdam) distributed algorithm, which combines a gradient tracking mechanism with first and second order momentum estimates of the gradient.
In these numerical experiments from multi-agent learning, GTAdam outperforms state-of-the-art distributed optimization methods.
arXiv Detail & Related papers (2020-09-03T15:20:21Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.