B-cos Alignment for Inherently Interpretable CNNs and Vision
Transformers
- URL: http://arxiv.org/abs/2306.10898v2
- Date: Mon, 15 Jan 2024 09:13:05 GMT
- Title: B-cos Alignment for Inherently Interpretable CNNs and Vision
Transformers
- Authors: Moritz B\"ohle, Navdeeppal Singh, Mario Fritz, Bernt Schiele
- Abstract summary: We present a new direction for increasing the interpretability of deep neural networks (DNNs) by promoting weight-input alignment during training.
We show that a sequence of such transformations induces a single linear transformation that faithfully summarises the full model computations.
We show that the resulting explanations are of high visual quality and perform well under quantitative interpretability metrics.
- Score: 97.75725574963197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new direction for increasing the interpretability of deep neural
networks (DNNs) by promoting weight-input alignment during training. For this,
we propose to replace the linear transformations in DNNs by our novel B-cos
transformation. As we show, a sequence (network) of such transformations
induces a single linear transformation that faithfully summarises the full
model computations. Moreover, the B-cos transformation is designed such that
the weights align with relevant signals during optimisation. As a result, those
induced linear transformations become highly interpretable and highlight
task-relevant features. Importantly, the B-cos transformation is designed to be
compatible with existing architectures and we show that it can easily be
integrated into virtually all of the latest state of the art models for
computer vision - e.g. ResNets, DenseNets, ConvNext models, as well as Vision
Transformers - by combining the B-cos-based explanations with normalisation and
attention layers, all whilst maintaining similar accuracy on ImageNet. Finally,
we show that the resulting explanations are of high visual quality and perform
well under quantitative interpretability metrics.
Related papers
- B-cosification: Transforming Deep Neural Networks to be Inherently Interpretable [53.848005910548565]
'B-cosification' is a novel approach to transform existing pre-trained models to become inherently interpretable.
We find that B-cosification can yield models that are on par with B-cos models trained from scratch in terms of interpretability.
arXiv Detail & Related papers (2024-11-01T16:28:11Z) - Self-Supervised Pre-Training for Table Structure Recognition Transformer [25.04573593082671]
We propose a self-supervised pre-training (SSP) method for table structure recognition transformers.
We discover that the performance gap between the linear projection transformer and the hybrid CNN-transformer can be mitigated by SSP of the visual encoder in the TSR model.
arXiv Detail & Related papers (2024-02-23T19:34:06Z) - Holistically Explainable Vision Transformers [136.27303006772294]
We propose B-cos transformers, which inherently provide holistic explanations for their decisions.
Specifically, we formulate each model component - such as the multi-layer perceptrons, attention layers, and the tokenisation module - to be dynamic linear.
We apply our proposed design to Vision Transformers (ViTs) and show that the resulting models, dubbed Bcos-ViTs, are highly interpretable and perform competitively to baseline ViTs.
arXiv Detail & Related papers (2023-01-20T16:45:34Z) - Transformers as Meta-Learners for Implicit Neural Representations [10.673855995948736]
Implicit Neural Representations (INRs) have emerged and shown their benefits over discrete representations in recent years.
We propose a formulation that uses Transformers as hypernetworks for INRs, where it can directly build the whole set of INR weights.
We demonstrate the effectiveness of our method for building INRs in different tasks and domains, including 2D image regression and view synthesis for 3D objects.
arXiv Detail & Related papers (2022-08-04T17:54:38Z) - B-cos Networks: Alignment is All We Need for Interpretability [136.27303006772294]
We present a new direction for increasing the interpretability of deep neural networks (DNNs) by promoting weight-input alignment during training.
A B-cos transform induces a single linear transform that faithfully summarises the full model computations.
We show that it can easily be integrated into common models such as VGGs, ResNets, InceptionNets, and DenseNets.
arXiv Detail & Related papers (2022-05-20T16:03:29Z) - Analogous to Evolutionary Algorithm: Designing a Unified Sequence Model [58.17021225930069]
We explain the rationality of Vision Transformer by analogy with the proven practical Evolutionary Algorithm (EA)
We propose a more efficient EAT model, and design task-related heads to deal with different tasks more flexibly.
Our approach achieves state-of-the-art results on the ImageNet classification task compared with recent vision transformer works.
arXiv Detail & Related papers (2021-05-31T16:20:03Z) - Vision Transformers for Dense Prediction [77.34726150561087]
We introduce dense vision transformers, an architecture that leverages vision transformers in place of convolutional networks as a backbone for dense prediction tasks.
Our experiments show that this architecture yields substantial improvements on dense prediction tasks.
arXiv Detail & Related papers (2021-03-24T18:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.