論文の概要: Tourist Attractions Recommendation based on Attention Knowledge Graph
Convolution Network
- arxiv url: http://arxiv.org/abs/2306.10946v1
- Date: Mon, 19 Jun 2023 14:06:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-21 17:38:25.589676
- Title: Tourist Attractions Recommendation based on Attention Knowledge Graph
Convolution Network
- Title(参考訳): 意識的知識グラフ畳み込みネットワークに基づく観光客の推薦
- Authors: Ahmad A. Mubarak and Afifa Kahled
- Abstract要約: 改良された注意知識グラフ畳み込みネットワークモデル(Att-KGCN)を提案する。
注意層は比較的類似した位置を集約し、隣接するベクトルでそれらを表現する。
観光客の好む選択によれば、このモデルはレコメンデーションシステムとして類似のスポットの確率を予測する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The recommendation algorithm based on knowledge graphs is at a relatively
mature stage. However, there are still some problems in the recommendation of
specific areas. For example, in the tourism field, selecting suitable tourist
attraction attributes process is complicated as the recommendation basis for
tourist attractions. In this paper, we propose the improved Attention Knowledge
Graph Convolution Network model, named (Att-KGCN), which automatically
discovers the neighboring entities of the target scenic spot semantically. The
attention layer aggregates relatively similar locations and represents them
with an adjacent vector. Then, according to the tourist's preferred choices,
the model predicts the probability of similar spots as a recommendation system.
A knowledge graph dataset of tourist attractions used based on tourism data on
Socotra Island-Yemen. Through experiments, it is verified that the Attention
Knowledge Graph Convolution Network has a good effect on the recommendation of
tourist attractions and can make more recommendations for tourists' choices.
- Abstract(参考訳): 知識グラフに基づく推薦アルゴリズムは比較的成熟した段階にある。
しかし、特定の分野の推薦にはいくつかの問題がある。
例えば、観光分野では、観光アトラクションの推奨基盤として、適切な観光アトラクション属性の選択プロセスが複雑である。
本稿では,対象の景観スポットの近傍のエンティティを自動的に意味的に発見する改良された意識知識グラフ畳み込みネットワークモデル(Att-KGCN)を提案する。
注意層は比較的類似した位置を集約し、隣接するベクトルでそれらを表現する。
そして、観光客の好む選択により、類似点の確率を推薦システムとして予測する。
Socotra Island-Yemenの観光データに基づく観光名所の知識グラフデータセット
実験により,アテンションナレッジグラフ畳み込みネットワークが観光名所のレコメンデーションに良い影響を与え,観光客の選択により多くのレコメンデーションをすることができることを確認した。
関連論文リスト
- Intrinsically motivated graph exploration using network theories of
human curiosity [71.2717061477241]
本稿では,人間の好奇心の2つの理論によるグラフ構造化データの探索手法を提案する。
提案した特徴を,グラフニューラルネットワークに基づく強化学習の報奨として利用する。
論文 参考訳(メタデータ) (2023-07-11T01:52:08Z) - Self-supervised Graph-based Point-of-interest Recommendation [66.58064122520747]
Next Point-of-Interest (POI)レコメンデーションは、ロケーションベースのeコマースにおいて重要なコンポーネントとなっている。
自己教師付きグラフ強化POIレコメンデーション(S2GRec)を次のPOIレコメンデーションのために提案する。
特に,グローバル・トランジション・グラフと局所軌道グラフの両方からの協調的な信号を組み込むために,グラフ強化セルフアテンテート・レイヤを考案した。
論文 参考訳(メタデータ) (2022-10-22T17:29:34Z) - Shape Preserving Facial Landmarks with Graph Attention Networks [3.996275177789895]
本稿では,CNN と Graph Attention Network Regressors のカスケードを組み合わせたモデルを提案する。
顔のランドマークの外観と位置を共同で表現するエンコーディングと、その信頼性に応じて情報を測定するアテンション機構を導入する。
実験により,提案モデルが顔の構造のグローバルな表現を学習し,頭部ポーズとランドマーク推定のベンチマークで最高性能を達成できることが確認された。
論文 参考訳(メタデータ) (2022-10-13T17:58:02Z) - Conditional Attention Networks for Distilling Knowledge Graphs in
Recommendation [74.14009444678031]
本稿では,知識グラフをレコメンデーションシステムに組み込むために,知識対応コンディショナルアテンションネットワーク(KCAN)を提案する。
本研究では,まず,ユーザ・イテムネットワークとナレッジグラフのグローバルな意味的類似性を捉えるノード表現を得る。
そして,そのサブグラフに条件付きアテンションアグリゲーションを適用することで,その知識グラフを改良し,目標固有ノード表現を得る。
論文 参考訳(メタデータ) (2021-11-03T09:40:43Z) - Recommending POIs for Tourists by User Behavior Modeling and
Pseudo-Rating [3.839157829013354]
観光客の多くは一度に数カ所の観光地を訪れており、これらのほとんどは新規観光客からのチェックインデータを持っていない。
従来のシステムでは、利用者の嗜好と人気、評判、カテゴリーに基づく類似性に基づいて観光スポットをランク付けしている。
観光客にPOIを推奨するメカニズムを提案する。
論文 参考訳(メタデータ) (2021-10-13T06:21:41Z) - DSKReG: Differentiable Sampling on Knowledge Graph for Recommendation
with Relational GNN [59.160401038969795]
我々は,GNN(DSKReG)を用いた推薦のための知識グラフの識別可能なサンプリングを提案する。
そこで本研究では,モデル学習手順と組み合わせて,関連する項目の選択を最適化する,識別可能なサンプリング戦略を考案する。
実験の結果,我々のモデルは最先端のKGベースのレコメンデータシステムよりも優れていた。
論文 参考訳(メタデータ) (2021-08-26T16:19:59Z) - Graphing else matters: exploiting aspect opinions and ratings in
explainable graph-based recommendations [66.83527496838937]
本稿では,テキストレビューで表現された評価情報とアスペクトベースの意見を組み合わせたグラフから抽出した埋め込みを活用することを提案する。
次に、AmazonとYelpの6つのドメインのレビューから生成されたグラフに対して、最先端のグラフ埋め込み技術を適用して評価する。
提案手法は,推奨項目について利用者が提示したアスペクトベースの意見を活用した説明を提供することの利点がある。
論文 参考訳(メタデータ) (2021-07-07T13:57:28Z) - Knowledge-Enhanced Top-K Recommendation in Poincar\'e Ball [33.90069123451581]
本稿では,知識グラフの階層構造を学習しやすくする,双曲空間における推薦モデルを提案する。
双曲的注意ネットワークを用いて、あるアイテムの隣接エンティティの相対的重要性を決定する。
提案モデルでは,Top-Kレコメンデーションにおいて,NDCG@Kの2~16%,既存モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-01-13T03:16:50Z) - Self-supervised Graph Learning for Recommendation [69.98671289138694]
ユーザ・イテムグラフを用いた自己教師型学習を推奨する。
補助的自己監督タスクは、自己識別によるノード表現学習を強化する。
3つのベンチマークデータセットに関する実証的研究は、SGLの有効性を示す。
論文 参考訳(メタデータ) (2020-10-21T06:35:26Z) - Deep Learning on Knowledge Graph for Recommender System: A Survey [36.41255991011155]
知識グラフは、2つのオブジェクトと1つまたは複数の関連属性を接続する高次関係を符号化することができる。
新たなグラフニューラルネットワーク(GNN)の助けを借りて,対象特性と関係性の両方をKGから抽出することができる。
論文 参考訳(メタデータ) (2020-03-25T22:53:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。