Adversarial Training Should Be Cast as a Non-Zero-Sum Game
- URL: http://arxiv.org/abs/2306.11035v2
- Date: Mon, 18 Mar 2024 18:55:44 GMT
- Title: Adversarial Training Should Be Cast as a Non-Zero-Sum Game
- Authors: Alexander Robey, Fabian Latorre, George J. Pappas, Hamed Hassani, Volkan Cevher,
- Abstract summary: Two-player zero-sum paradigm of adversarial training has not engendered sufficient levels of robustness.
We show that the commonly used surrogate-based relaxation used in adversarial training algorithms voids all guarantees on robustness.
A novel non-zero-sum bilevel formulation of adversarial training yields a framework that matches and in some cases outperforms state-of-the-art attacks.
- Score: 121.95628660889628
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One prominent approach toward resolving the adversarial vulnerability of deep neural networks is the two-player zero-sum paradigm of adversarial training, in which predictors are trained against adversarially chosen perturbations of data. Despite the promise of this approach, algorithms based on this paradigm have not engendered sufficient levels of robustness and suffer from pathological behavior like robust overfitting. To understand this shortcoming, we first show that the commonly used surrogate-based relaxation used in adversarial training algorithms voids all guarantees on the robustness of trained classifiers. The identification of this pitfall informs a novel non-zero-sum bilevel formulation of adversarial training, wherein each player optimizes a different objective function. Our formulation yields a simple algorithmic framework that matches and in some cases outperforms state-of-the-art attacks, attains comparable levels of robustness to standard adversarial training algorithms, and does not suffer from robust overfitting.
Related papers
- Efficient Adversarial Training in LLMs with Continuous Attacks [99.5882845458567]
Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails.
We propose a fast adversarial training algorithm (C-AdvUL) composed of two losses.
C-AdvIPO is an adversarial variant of IPO that does not require utility data for adversarially robust alignment.
arXiv Detail & Related papers (2024-05-24T14:20:09Z) - Outlier Robust Adversarial Training [57.06824365801612]
We introduce Outlier Robust Adversarial Training (ORAT) in this work.
ORAT is based on a bi-level optimization formulation of adversarial training with a robust rank-based loss function.
We show that the learning objective of ORAT satisfies the $mathcalH$-consistency in binary classification, which establishes it as a proper surrogate to adversarial 0/1 loss.
arXiv Detail & Related papers (2023-09-10T21:36:38Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
We propose a novel doubly-robust instance reweighted adversarial framework.
Our importance weights are obtained by optimizing the KL-divergence regularized loss function.
Our proposed approach outperforms related state-of-the-art baseline methods in terms of average robust performance.
arXiv Detail & Related papers (2023-08-01T06:16:18Z) - Addressing Mistake Severity in Neural Networks with Semantic Knowledge [0.0]
Most robust training techniques aim to improve model accuracy on perturbed inputs.
As an alternate form of robustness, we aim to reduce the severity of mistakes made by neural networks in challenging conditions.
We leverage current adversarial training methods to generate targeted adversarial attacks during the training process.
Results demonstrate that our approach performs better with respect to mistake severity compared to standard and adversarially trained models.
arXiv Detail & Related papers (2022-11-21T22:01:36Z) - Improving Adversarial Robustness with Self-Paced Hard-Class Pair
Reweighting [5.084323778393556]
adversarial training with untargeted attacks is one of the most recognized methods.
We find that the naturally imbalanced inter-class semantic similarity makes those hard-class pairs to become the virtual targets of each other.
We propose to upweight hard-class pair loss in model optimization, which prompts learning discriminative features from hard classes.
arXiv Detail & Related papers (2022-10-26T22:51:36Z) - Adversarial Coreset Selection for Efficient Robust Training [11.510009152620666]
We show how selecting a small subset of training data provides a principled approach to reducing the time complexity of robust training.
We conduct extensive experiments to demonstrate that our approach speeds up adversarial training by 2-3 times.
arXiv Detail & Related papers (2022-09-13T07:37:53Z) - Enhancing Adversarial Training with Feature Separability [52.39305978984573]
We introduce a new concept of adversarial training graph (ATG) with which the proposed adversarial training with feature separability (ATFS) enables to boost the intra-class feature similarity and increase inter-class feature variance.
Through comprehensive experiments, we demonstrate that the proposed ATFS framework significantly improves both clean and robust performance.
arXiv Detail & Related papers (2022-05-02T04:04:23Z) - Robustness-via-Synthesis: Robust Training with Generative Adversarial
Perturbations [10.140147080535224]
Adversarial training with first-order attacks has been one of the most effective defenses against adversarial perturbations to this day.
This study presents a robust training algorithm where the adversarial perturbations are automatically synthesized from a random vector using a generator network.
Experimental results show that the proposed approach attains comparable robustness with various gradient-based and generative robust training techniques.
arXiv Detail & Related papers (2021-08-22T13:15:24Z) - A black-box adversarial attack for poisoning clustering [78.19784577498031]
We propose a black-box adversarial attack for crafting adversarial samples to test the robustness of clustering algorithms.
We show that our attacks are transferable even against supervised algorithms such as SVMs, random forests, and neural networks.
arXiv Detail & Related papers (2020-09-09T18:19:31Z) - Improving adversarial robustness of deep neural networks by using
semantic information [17.887586209038968]
Adrial training is the main method for improving adversarial robustness and the first line of defense against adversarial attacks.
This paper provides a new perspective on the issue of adversarial robustness, one that shifts the focus from the network as a whole to the critical part of the region close to the decision boundary corresponding to a given class.
Experimental results on the MNIST and CIFAR-10 datasets show that this approach greatly improves adversarial robustness even using a very small dataset from the training data.
arXiv Detail & Related papers (2020-08-18T10:23:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.