Improving Adversarial Robustness with Self-Paced Hard-Class Pair
Reweighting
- URL: http://arxiv.org/abs/2210.15068v1
- Date: Wed, 26 Oct 2022 22:51:36 GMT
- Title: Improving Adversarial Robustness with Self-Paced Hard-Class Pair
Reweighting
- Authors: Pengyue Hou, Jie Han, Xingyu Li
- Abstract summary: adversarial training with untargeted attacks is one of the most recognized methods.
We find that the naturally imbalanced inter-class semantic similarity makes those hard-class pairs to become the virtual targets of each other.
We propose to upweight hard-class pair loss in model optimization, which prompts learning discriminative features from hard classes.
- Score: 5.084323778393556
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Neural Networks are vulnerable to adversarial attacks. Among many
defense strategies, adversarial training with untargeted attacks is one of the
most recognized methods. Theoretically, the predicted labels of untargeted
attacks should be unpredictable and uniformly-distributed overall false
classes. However, we find that the naturally imbalanced inter-class semantic
similarity makes those hard-class pairs to become the virtual targets of each
other. This study investigates the impact of such closely-coupled classes on
adversarial attacks and develops a self-paced reweighting strategy in
adversarial training accordingly. Specifically, we propose to upweight
hard-class pair loss in model optimization, which prompts learning
discriminative features from hard classes. We further incorporate a term to
quantify hard-class pair consistency in adversarial training, which greatly
boost model robustness. Extensive experiments show that the proposed
adversarial training method achieves superior robustness performance over
state-of-the-art defenses against a wide range of adversarial attacks.
Related papers
- Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
Current defense mainly focuses on the known attacks, but the adversarial robustness to the unknown attacks is seriously overlooked.
We propose an attack-agnostic defense method named Meta Invariance Defense (MID)
We show that MID simultaneously achieves robustness to the imperceptible adversarial perturbations in high-level image classification and attack-suppression in low-level robust image regeneration.
arXiv Detail & Related papers (2024-04-04T10:10:38Z) - Adversarial Training Should Be Cast as a Non-Zero-Sum Game [121.95628660889628]
Two-player zero-sum paradigm of adversarial training has not engendered sufficient levels of robustness.
We show that the commonly used surrogate-based relaxation used in adversarial training algorithms voids all guarantees on robustness.
A novel non-zero-sum bilevel formulation of adversarial training yields a framework that matches and in some cases outperforms state-of-the-art attacks.
arXiv Detail & Related papers (2023-06-19T16:00:48Z) - Improved Adversarial Training Through Adaptive Instance-wise Loss
Smoothing [5.1024659285813785]
Adversarial training has been the most successful defense against such adversarial attacks.
We propose a new adversarial training method: Instance-adaptive Smoothness Enhanced Adversarial Training.
Our method achieves state-of-the-art robustness against $ell_infty$-norm constrained attacks.
arXiv Detail & Related papers (2023-03-24T15:41:40Z) - Resisting Adversarial Attacks in Deep Neural Networks using Diverse
Decision Boundaries [12.312877365123267]
Deep learning systems are vulnerable to crafted adversarial examples, which may be imperceptible to the human eye, but can lead the model to misclassify.
We develop a new ensemble-based solution that constructs defender models with diverse decision boundaries with respect to the original model.
We present extensive experimentations using standard image classification datasets, namely MNIST, CIFAR-10 and CIFAR-100 against state-of-the-art adversarial attacks.
arXiv Detail & Related papers (2022-08-18T08:19:26Z) - Enhancing Adversarial Training with Feature Separability [52.39305978984573]
We introduce a new concept of adversarial training graph (ATG) with which the proposed adversarial training with feature separability (ATFS) enables to boost the intra-class feature similarity and increase inter-class feature variance.
Through comprehensive experiments, we demonstrate that the proposed ATFS framework significantly improves both clean and robust performance.
arXiv Detail & Related papers (2022-05-02T04:04:23Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
We propose to explore adversarial examples and attack detection on reinforcement learning-based interactive recommendation systems.
We first craft different types of adversarial examples by adding perturbations to the input and intervening on the casual factors.
Then, we augment recommendation systems by detecting potential attacks with a deep learning-based classifier based on the crafted data.
arXiv Detail & Related papers (2021-12-02T04:12:24Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - Analysis and Applications of Class-wise Robustness in Adversarial
Training [92.08430396614273]
Adversarial training is one of the most effective approaches to improve model robustness against adversarial examples.
Previous works mainly focus on the overall robustness of the model, and the in-depth analysis on the role of each class involved in adversarial training is still missing.
We provide a detailed diagnosis of adversarial training on six benchmark datasets, i.e., MNIST, CIFAR-10, CIFAR-100, SVHN, STL-10 and ImageNet.
We observe that the stronger attack methods in adversarial learning achieve performance improvement mainly from a more successful attack on the vulnerable classes.
arXiv Detail & Related papers (2021-05-29T07:28:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.