Simple and Fast Group Robustness by Automatic Feature Reweighting
- URL: http://arxiv.org/abs/2306.11074v1
- Date: Mon, 19 Jun 2023 17:19:13 GMT
- Title: Simple and Fast Group Robustness by Automatic Feature Reweighting
- Authors: Shikai Qiu, Andres Potapczynski, Pavel Izmailov and Andrew Gordon
Wilson
- Abstract summary: We propose Automatic Feature Reweighting (AFR) to reduce the reliance on spurious features.
AFR retrains the last layer of a standard ERM-trained base model with a weighted loss.
We improve upon the best reported results among competing methods trained without spurious attributes on several vision and natural language classification benchmarks.
- Score: 45.9024045614187
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A major challenge to out-of-distribution generalization is reliance on
spurious features -- patterns that are predictive of the class label in the
training data distribution, but not causally related to the target. Standard
methods for reducing the reliance on spurious features typically assume that we
know what the spurious feature is, which is rarely true in the real world.
Methods that attempt to alleviate this limitation are complex, hard to tune,
and lead to a significant computational overhead compared to standard training.
In this paper, we propose Automatic Feature Reweighting (AFR), an extremely
simple and fast method for updating the model to reduce the reliance on
spurious features. AFR retrains the last layer of a standard ERM-trained base
model with a weighted loss that emphasizes the examples where the ERM model
predicts poorly, automatically upweighting the minority group without group
labels. With this simple procedure, we improve upon the best reported results
among competing methods trained without spurious attributes on several vision
and natural language classification benchmarks, using only a fraction of their
compute.
Related papers
- Trained Models Tell Us How to Make Them Robust to Spurious Correlation without Group Annotation [3.894771553698554]
Empirical Risk Minimization (ERM) models tend to rely on attributes that have high spurious correlation with the target.
This can degrade the performance on underrepresented (or'minority') groups that lack these attributes.
We propose Environment-based Validation and Loss-based Sampling (EVaLS) to enhance robustness to spurious correlation.
arXiv Detail & Related papers (2024-10-07T08:17:44Z) - Efficient Bias Mitigation Without Privileged Information [14.21628601482357]
Deep neural networks trained via empirical risk minimisation often exhibit significant performance disparities across groups.
Existing bias mitigation methods that aim to address this issue often rely on group labels for training or validation.
We propose Targeted Augmentations for Bias Mitigation (TAB), a framework that leverages the entire training history of a helper model to identify spurious samples.
We show that TAB improves worst-group performance without any group information or model selection, outperforming existing methods while maintaining overall accuracy.
arXiv Detail & Related papers (2024-09-26T09:56:13Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Annotation-Free Group Robustness via Loss-Based Resampling [3.355491272942994]
Training neural networks for image classification with empirical risk minimization makes them vulnerable to relying on spurious attributes instead of causal ones for prediction.
We propose a new method, called loss-based feature re-weighting (LFR), in which we infer a grouping of the data by evaluating an ERM-pre-trained model on a small left-out split of the training data.
For a complete assessment, we evaluate LFR on various versions of Waterbirds and CelebA datasets with different spurious correlations.
arXiv Detail & Related papers (2023-12-08T08:22:02Z) - Bias Amplification Enhances Minority Group Performance [10.380812738348899]
We propose BAM, a novel two-stage training algorithm.
In the first stage, the model is trained using a bias amplification scheme via introducing a learnable auxiliary variable for each training sample.
In the second stage, we upweight the samples that the bias-amplified model misclassifies, and then continue training the same model on the reweighted dataset.
arXiv Detail & Related papers (2023-09-13T04:40:08Z) - Modeling the Q-Diversity in a Min-max Play Game for Robust Optimization [61.39201891894024]
Group distributionally robust optimization (group DRO) can minimize the worst-case loss over pre-defined groups.
We reformulate the group DRO framework by proposing Q-Diversity.
Characterized by an interactive training mode, Q-Diversity relaxes the group identification from annotation into direct parameterization.
arXiv Detail & Related papers (2023-05-20T07:02:27Z) - Easy Learning from Label Proportions [17.71834385754893]
Easyllp is a flexible and simple-to-implement debiasing approach based on aggregate labels.
Our technique allows us to accurately estimate the expected loss of an arbitrary model at an individual level.
arXiv Detail & Related papers (2023-02-06T20:41:38Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - Unsupervised Learning of Debiased Representations with Pseudo-Attributes [85.5691102676175]
We propose a simple but effective debiasing technique in an unsupervised manner.
We perform clustering on the feature embedding space and identify pseudoattributes by taking advantage of the clustering results.
We then employ a novel cluster-based reweighting scheme for learning debiased representation.
arXiv Detail & Related papers (2021-08-06T05:20:46Z) - Examining and Combating Spurious Features under Distribution Shift [94.31956965507085]
We define and analyze robust and spurious representations using the information-theoretic concept of minimal sufficient statistics.
We prove that even when there is only bias of the input distribution, models can still pick up spurious features from their training data.
Inspired by our analysis, we demonstrate that group DRO can fail when groups do not directly account for various spurious correlations.
arXiv Detail & Related papers (2021-06-14T05:39:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.