Trained Models Tell Us How to Make Them Robust to Spurious Correlation without Group Annotation
- URL: http://arxiv.org/abs/2410.05345v1
- Date: Mon, 7 Oct 2024 08:17:44 GMT
- Title: Trained Models Tell Us How to Make Them Robust to Spurious Correlation without Group Annotation
- Authors: Mahdi Ghaznavi, Hesam Asadollahzadeh, Fahimeh Hosseini Noohdani, Soroush Vafaie Tabar, Hosein Hasani, Taha Akbari Alvanagh, Mohammad Hossein Rohban, Mahdieh Soleymani Baghshah,
- Abstract summary: Empirical Risk Minimization (ERM) models tend to rely on attributes that have high spurious correlation with the target.
This can degrade the performance on underrepresented (or'minority') groups that lack these attributes.
We propose Environment-based Validation and Loss-based Sampling (EVaLS) to enhance robustness to spurious correlation.
- Score: 3.894771553698554
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classifiers trained with Empirical Risk Minimization (ERM) tend to rely on attributes that have high spurious correlation with the target. This can degrade the performance on underrepresented (or 'minority') groups that lack these attributes, posing significant challenges for both out-of-distribution generalization and fairness objectives. Many studies aim to enhance robustness to spurious correlation, but they sometimes depend on group annotations for training. Additionally, a common limitation in previous research is the reliance on group-annotated validation datasets for model selection. This constrains their applicability in situations where the nature of the spurious correlation is not known, or when group labels for certain spurious attributes are not available. To enhance model robustness with minimal group annotation assumptions, we propose Environment-based Validation and Loss-based Sampling (EVaLS). It uses the losses from an ERM-trained model to construct a balanced dataset of high-loss and low-loss samples, mitigating group imbalance in data. This significantly enhances robustness to group shifts when equipped with a simple post-training last layer retraining. By using environment inference methods to create diverse environments with correlation shifts, EVaLS can potentially eliminate the need for group annotation in validation data. In this context, the worst environment accuracy acts as a reliable surrogate throughout the retraining process for tuning hyperparameters and finding a model that performs well across diverse group shifts. EVaLS effectively achieves group robustness, showing that group annotation is not necessary even for validation. It is a fast, straightforward, and effective approach that reaches near-optimal worst group accuracy without needing group annotations, marking a new chapter in the robustness of trained models against spurious correlation.
Related papers
- Efficient Bias Mitigation Without Privileged Information [14.21628601482357]
Deep neural networks trained via empirical risk minimisation often exhibit significant performance disparities across groups.
Existing bias mitigation methods that aim to address this issue often rely on group labels for training or validation.
We propose Targeted Augmentations for Bias Mitigation (TAB), a framework that leverages the entire training history of a helper model to identify spurious samples.
We show that TAB improves worst-group performance without any group information or model selection, outperforming existing methods while maintaining overall accuracy.
arXiv Detail & Related papers (2024-09-26T09:56:13Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Annotation-Free Group Robustness via Loss-Based Resampling [3.355491272942994]
Training neural networks for image classification with empirical risk minimization makes them vulnerable to relying on spurious attributes instead of causal ones for prediction.
We propose a new method, called loss-based feature re-weighting (LFR), in which we infer a grouping of the data by evaluating an ERM-pre-trained model on a small left-out split of the training data.
For a complete assessment, we evaluate LFR on various versions of Waterbirds and CelebA datasets with different spurious correlations.
arXiv Detail & Related papers (2023-12-08T08:22:02Z) - Bias Amplification Enhances Minority Group Performance [10.380812738348899]
We propose BAM, a novel two-stage training algorithm.
In the first stage, the model is trained using a bias amplification scheme via introducing a learnable auxiliary variable for each training sample.
In the second stage, we upweight the samples that the bias-amplified model misclassifies, and then continue training the same model on the reweighted dataset.
arXiv Detail & Related papers (2023-09-13T04:40:08Z) - Modeling the Q-Diversity in a Min-max Play Game for Robust Optimization [61.39201891894024]
Group distributionally robust optimization (group DRO) can minimize the worst-case loss over pre-defined groups.
We reformulate the group DRO framework by proposing Q-Diversity.
Characterized by an interactive training mode, Q-Diversity relaxes the group identification from annotation into direct parameterization.
arXiv Detail & Related papers (2023-05-20T07:02:27Z) - Take One Gram of Neural Features, Get Enhanced Group Robustness [23.541213868620837]
Predictive performance of machine learning models trained with empirical risk minimization can degrade considerably under distribution shifts.
We propose to partition the training dataset into groups based on Gram matrices of features extracted by an identification'' model.
Our approach not only improves group robustness over ERM but also outperforms all recent baselines.
arXiv Detail & Related papers (2022-08-26T12:34:55Z) - Correct-N-Contrast: A Contrastive Approach for Improving Robustness to
Spurious Correlations [59.24031936150582]
Spurious correlations pose a major challenge for robust machine learning.
Models trained with empirical risk minimization (ERM) may learn to rely on correlations between class labels and spurious attributes.
We propose Correct-N-Contrast (CNC), a contrastive approach to directly learn representations robust to spurious correlations.
arXiv Detail & Related papers (2022-03-03T05:03:28Z) - Towards Group Robustness in the presence of Partial Group Labels [61.33713547766866]
spurious correlations between input samples and the target labels wrongly direct the neural network predictions.
We propose an algorithm that optimize for the worst-off group assignments from a constraint set.
We show improvements in the minority group's performance while preserving overall aggregate accuracy across groups.
arXiv Detail & Related papers (2022-01-10T22:04:48Z) - Just Train Twice: Improving Group Robustness without Training Group
Information [101.84574184298006]
Standard training via empirical risk minimization can produce models that achieve high accuracy on average but low accuracy on certain groups.
Prior approaches that achieve high worst-group accuracy, like group distributionally robust optimization (group DRO) require expensive group annotations for each training point.
We propose a simple two-stage approach, JTT, that first trains a standard ERM model for several epochs, and then trains a second model that upweights the training examples that the first model misclassified.
arXiv Detail & Related papers (2021-07-19T17:52:32Z) - Examining and Combating Spurious Features under Distribution Shift [94.31956965507085]
We define and analyze robust and spurious representations using the information-theoretic concept of minimal sufficient statistics.
We prove that even when there is only bias of the input distribution, models can still pick up spurious features from their training data.
Inspired by our analysis, we demonstrate that group DRO can fail when groups do not directly account for various spurious correlations.
arXiv Detail & Related papers (2021-06-14T05:39:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.